用于视频监控的运动物体检测和跟踪

I. Cohen, G. Medioni
{"title":"用于视频监控的运动物体检测和跟踪","authors":"I. Cohen, G. Medioni","doi":"10.1109/CVPR.1999.784651","DOIUrl":null,"url":null,"abstract":"We address the problem of detection and tracking of moving objects in a video stream obtained from a moving airborne platform. The proposed method relies on a graph representation of moving objects which allows to derive and maintain a dynamic template of each moving object by enforcing their temporal coherence. This inferred template along with the graph representation used in our approach allows us to characterize objects trajectories as an optimal path in a graph. The proposed tracker allows to deal with partial occlusions, stop and go motion in very challenging situations. We demonstrate results on a number of different real sequences. We then define an evaluation methodology to quantify our results and show how tracking overcome detection errors.","PeriodicalId":20644,"journal":{"name":"Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"1999-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"250","resultStr":"{\"title\":\"Detecting and tracking moving objects for video surveillance\",\"authors\":\"I. Cohen, G. Medioni\",\"doi\":\"10.1109/CVPR.1999.784651\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We address the problem of detection and tracking of moving objects in a video stream obtained from a moving airborne platform. The proposed method relies on a graph representation of moving objects which allows to derive and maintain a dynamic template of each moving object by enforcing their temporal coherence. This inferred template along with the graph representation used in our approach allows us to characterize objects trajectories as an optimal path in a graph. The proposed tracker allows to deal with partial occlusions, stop and go motion in very challenging situations. We demonstrate results on a number of different real sequences. We then define an evaluation methodology to quantify our results and show how tracking overcome detection errors.\",\"PeriodicalId\":20644,\"journal\":{\"name\":\"Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1999-06-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"250\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CVPR.1999.784651\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.1999.784651","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 250

摘要

我们解决了从移动的机载平台获得的视频流中检测和跟踪运动物体的问题。所提出的方法依赖于移动对象的图形表示,允许通过强制它们的时间一致性来派生和维护每个移动对象的动态模板。这个推断模板以及在我们的方法中使用的图形表示允许我们将对象轨迹表征为图形中的最佳路径。提出的跟踪器允许处理部分闭塞,在非常具有挑战性的情况下走走停停。我们在许多不同的实序列上证明了结果。然后,我们定义一个评估方法来量化我们的结果,并展示跟踪如何克服检测错误。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Detecting and tracking moving objects for video surveillance
We address the problem of detection and tracking of moving objects in a video stream obtained from a moving airborne platform. The proposed method relies on a graph representation of moving objects which allows to derive and maintain a dynamic template of each moving object by enforcing their temporal coherence. This inferred template along with the graph representation used in our approach allows us to characterize objects trajectories as an optimal path in a graph. The proposed tracker allows to deal with partial occlusions, stop and go motion in very challenging situations. We demonstrate results on a number of different real sequences. We then define an evaluation methodology to quantify our results and show how tracking overcome detection errors.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信