人类情感分类:一种特定表达的几何方法

Avishek Nandi, P. Dutta, Md. Nasir
{"title":"人类情感分类:一种特定表达的几何方法","authors":"Avishek Nandi, P. Dutta, Md. Nasir","doi":"10.1109/ComPE49325.2020.9200086","DOIUrl":null,"url":null,"abstract":"Human face emotions are generally classified in six different expressions such as Anger, Disgust, Fear, Happiness, Sadness, and Surprise. The authors propose a novel method for selecting an expression specific set of salient landmark points out of 68 landmark points produced by applying an Active Appearance Model (AAM) on an input face image. The salient Landmark points are selected by training a MultiLayer Perceptron network using a Histogram oriented Gradient (HoG) feature of neighboring pixels of a Landmark point. Next, a shape signature vector is constructed by forming triangulation using those salient landmarks for each expression. This is trained with six Multilayered Perceptron (MLP) network for classification of each of the six basic expressions. The suggested algorithm is tested on CK+, JAFFE, MMI, and MUG database. The outcomes are found extremely promising.","PeriodicalId":6804,"journal":{"name":"2020 International Conference on Computational Performance Evaluation (ComPE)","volume":"51 1","pages":"217-221"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Human Emotion Classification: An Expression Specific Geometric Approach\",\"authors\":\"Avishek Nandi, P. Dutta, Md. Nasir\",\"doi\":\"10.1109/ComPE49325.2020.9200086\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Human face emotions are generally classified in six different expressions such as Anger, Disgust, Fear, Happiness, Sadness, and Surprise. The authors propose a novel method for selecting an expression specific set of salient landmark points out of 68 landmark points produced by applying an Active Appearance Model (AAM) on an input face image. The salient Landmark points are selected by training a MultiLayer Perceptron network using a Histogram oriented Gradient (HoG) feature of neighboring pixels of a Landmark point. Next, a shape signature vector is constructed by forming triangulation using those salient landmarks for each expression. This is trained with six Multilayered Perceptron (MLP) network for classification of each of the six basic expressions. The suggested algorithm is tested on CK+, JAFFE, MMI, and MUG database. The outcomes are found extremely promising.\",\"PeriodicalId\":6804,\"journal\":{\"name\":\"2020 International Conference on Computational Performance Evaluation (ComPE)\",\"volume\":\"51 1\",\"pages\":\"217-221\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 International Conference on Computational Performance Evaluation (ComPE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ComPE49325.2020.9200086\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 International Conference on Computational Performance Evaluation (ComPE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ComPE49325.2020.9200086","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

人类面部表情通常分为六种不同的表情,如愤怒、厌恶、恐惧、快乐、悲伤和惊讶。作者提出了一种新的方法,通过对输入的人脸图像应用主动外观模型(AAM),从68个显著地标点中选择一组表达特定的显著地标点。通过使用Landmark点相邻像素的直方图梯度(Histogram oriented Gradient, HoG)特征训练多层感知器网络来选择显著的Landmark点。接下来,通过使用每个表达式的显著标志形成三角剖分来构造形状签名向量。这是用6个多层感知器(MLP)网络进行训练,对每6个基本表情进行分类。该算法在CK+、JAFFE、MMI和MUG数据库上进行了测试。结果被认为是非常有希望的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Human Emotion Classification: An Expression Specific Geometric Approach
Human face emotions are generally classified in six different expressions such as Anger, Disgust, Fear, Happiness, Sadness, and Surprise. The authors propose a novel method for selecting an expression specific set of salient landmark points out of 68 landmark points produced by applying an Active Appearance Model (AAM) on an input face image. The salient Landmark points are selected by training a MultiLayer Perceptron network using a Histogram oriented Gradient (HoG) feature of neighboring pixels of a Landmark point. Next, a shape signature vector is constructed by forming triangulation using those salient landmarks for each expression. This is trained with six Multilayered Perceptron (MLP) network for classification of each of the six basic expressions. The suggested algorithm is tested on CK+, JAFFE, MMI, and MUG database. The outcomes are found extremely promising.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信