研究蛋白质核酸组装的实验和理论高压策略

T.W. Lynch , S.G. Sligar
{"title":"研究蛋白质核酸组装的实验和理论高压策略","authors":"T.W. Lynch ,&nbsp;S.G. Sligar","doi":"10.1016/S0167-4838(01)00350-8","DOIUrl":null,"url":null,"abstract":"<div><p>A method was developed to investigate the stability of protein–nucleic acid complexes using hydrostatic pressure during electrophoretic gel mobility shift analysis. The initial system probed by this technique was the well-characterized cognate <em>Bam</em>HI–DNA complex. Band shift analysis at several elevated pressures found the equilibrium dissociation (<em>K</em><sub>d</sub>) constant to be dependent on pressure, which allowed the volume change of dissociation (Δ<em>V</em>) to be calculated. In order to describe the effects of pressure on the specific <em>Bam</em>HI–DNA complex at the molecular level, molecular dynamics simulations at both ambient and elevated pressure was performed. Comparison of the simulation trajectories identified several individual <em>Bam</em>HI–DNA contacts that are disrupted due to pressure. The disruption of these contacts can be attributed to an observed pressure-induced increase in hydration at the protein–DNA interface during the elevated pressure simulation.</p></div>","PeriodicalId":100166,"journal":{"name":"Biochimica et Biophysica Acta (BBA) - Protein Structure and Molecular Enzymology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2002-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S0167-4838(01)00350-8","citationCount":"19","resultStr":"{\"title\":\"Experimental and theoretical high pressure strategies for investigating protein–nucleic acid assemblies\",\"authors\":\"T.W. Lynch ,&nbsp;S.G. Sligar\",\"doi\":\"10.1016/S0167-4838(01)00350-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>A method was developed to investigate the stability of protein–nucleic acid complexes using hydrostatic pressure during electrophoretic gel mobility shift analysis. The initial system probed by this technique was the well-characterized cognate <em>Bam</em>HI–DNA complex. Band shift analysis at several elevated pressures found the equilibrium dissociation (<em>K</em><sub>d</sub>) constant to be dependent on pressure, which allowed the volume change of dissociation (Δ<em>V</em>) to be calculated. In order to describe the effects of pressure on the specific <em>Bam</em>HI–DNA complex at the molecular level, molecular dynamics simulations at both ambient and elevated pressure was performed. Comparison of the simulation trajectories identified several individual <em>Bam</em>HI–DNA contacts that are disrupted due to pressure. The disruption of these contacts can be attributed to an observed pressure-induced increase in hydration at the protein–DNA interface during the elevated pressure simulation.</p></div>\",\"PeriodicalId\":100166,\"journal\":{\"name\":\"Biochimica et Biophysica Acta (BBA) - Protein Structure and Molecular Enzymology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-03-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/S0167-4838(01)00350-8\",\"citationCount\":\"19\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biochimica et Biophysica Acta (BBA) - Protein Structure and Molecular Enzymology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167483801003508\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochimica et Biophysica Acta (BBA) - Protein Structure and Molecular Enzymology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167483801003508","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

摘要

在电泳凝胶迁移率漂移分析中,建立了一种利用静水压力研究蛋白质-核酸复合物稳定性的方法。该技术探测的初始系统是鉴定良好的同源BamHI-DNA复合物。在几种高压下的带移分析发现平衡解离(Kd)常数依赖于压力,从而可以计算解离的体积变化(ΔV)。为了在分子水平上描述压力对特定BamHI-DNA复合物的影响,在环境压力和高压下进行了分子动力学模拟。模拟轨迹的比较确定了由于压力而破坏的几个单独的BamHI-DNA接触。这些接触的破坏可归因于在高压模拟过程中观察到的压力诱导的蛋白质- dna界面水化作用的增加。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Experimental and theoretical high pressure strategies for investigating protein–nucleic acid assemblies

A method was developed to investigate the stability of protein–nucleic acid complexes using hydrostatic pressure during electrophoretic gel mobility shift analysis. The initial system probed by this technique was the well-characterized cognate BamHI–DNA complex. Band shift analysis at several elevated pressures found the equilibrium dissociation (Kd) constant to be dependent on pressure, which allowed the volume change of dissociation (ΔV) to be calculated. In order to describe the effects of pressure on the specific BamHI–DNA complex at the molecular level, molecular dynamics simulations at both ambient and elevated pressure was performed. Comparison of the simulation trajectories identified several individual BamHI–DNA contacts that are disrupted due to pressure. The disruption of these contacts can be attributed to an observed pressure-induced increase in hydration at the protein–DNA interface during the elevated pressure simulation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信