图的强公平顶点k-拟性的nordhaus - gaddum型结果

IF 0.5 Q4 COMPUTER SCIENCE, THEORY & METHODS
Zhiwei Guo
{"title":"图的强公平顶点k-拟性的nordhaus - gaddum型结果","authors":"Zhiwei Guo","doi":"10.1142/s0219265923500068","DOIUrl":null,"url":null,"abstract":"For a graph [Formula: see text] and positive integers [Formula: see text], [Formula: see text], a [Formula: see text]-tree-vertex coloring of [Formula: see text] refers to a [Formula: see text]-vertex coloring of [Formula: see text] satisfying every component of each induced subgraph generated by every set of vertices with the same color forms a tree with maximum degree not larger than [Formula: see text], and it is called equitable if the difference between the cardinalities of every pair of sets of vertices with the same color is at most [Formula: see text]. The strong equitable vertex [Formula: see text]-arboricity of [Formula: see text], denoted by [Formula: see text], is defined as the least positive integer [Formula: see text] satisfying [Formula: see text], which admits an equitable [Formula: see text]-tree-vertex coloring for each integer [Formula: see text] with [Formula: see text]. The strong equitable vertex [Formula: see text]-arboricity of a graph is very useful in graph theory applications such as load balance in parallel memory systems, constructing timetables and scheduling. In this paper, we present the tight upper and lower bounds on [Formula: see text] for an arbitrary graph [Formula: see text] with [Formula: see text] vertices and a given integer [Formula: see text] with [Formula: see text], and we characterize the extremal graphs [Formula: see text] with [Formula: see text], [Formula: see text], [Formula: see text], respectively. Based on the above extremal results, we further obtain the Nordhaus–Gaddum-type results for [Formula: see text] of graphs [Formula: see text] with [Formula: see text] vertices for a given integer [Formula: see text] with [Formula: see text].","PeriodicalId":53990,"journal":{"name":"JOURNAL OF INTERCONNECTION NETWORKS","volume":"31 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2023-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nordhaus–Gaddum-Type Results for the Strong Equitable Vertex k-Arboricity of Graphs\",\"authors\":\"Zhiwei Guo\",\"doi\":\"10.1142/s0219265923500068\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For a graph [Formula: see text] and positive integers [Formula: see text], [Formula: see text], a [Formula: see text]-tree-vertex coloring of [Formula: see text] refers to a [Formula: see text]-vertex coloring of [Formula: see text] satisfying every component of each induced subgraph generated by every set of vertices with the same color forms a tree with maximum degree not larger than [Formula: see text], and it is called equitable if the difference between the cardinalities of every pair of sets of vertices with the same color is at most [Formula: see text]. The strong equitable vertex [Formula: see text]-arboricity of [Formula: see text], denoted by [Formula: see text], is defined as the least positive integer [Formula: see text] satisfying [Formula: see text], which admits an equitable [Formula: see text]-tree-vertex coloring for each integer [Formula: see text] with [Formula: see text]. The strong equitable vertex [Formula: see text]-arboricity of a graph is very useful in graph theory applications such as load balance in parallel memory systems, constructing timetables and scheduling. In this paper, we present the tight upper and lower bounds on [Formula: see text] for an arbitrary graph [Formula: see text] with [Formula: see text] vertices and a given integer [Formula: see text] with [Formula: see text], and we characterize the extremal graphs [Formula: see text] with [Formula: see text], [Formula: see text], [Formula: see text], respectively. Based on the above extremal results, we further obtain the Nordhaus–Gaddum-type results for [Formula: see text] of graphs [Formula: see text] with [Formula: see text] vertices for a given integer [Formula: see text] with [Formula: see text].\",\"PeriodicalId\":53990,\"journal\":{\"name\":\"JOURNAL OF INTERCONNECTION NETWORKS\",\"volume\":\"31 1\",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2023-05-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"JOURNAL OF INTERCONNECTION NETWORKS\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/s0219265923500068\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"JOURNAL OF INTERCONNECTION NETWORKS","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0219265923500068","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

摘要

对于图[公式:见文]和正整数[公式:见文]、[公式:见文],[公式:见文]的[公式:见文]的[公式:见文]的[公式:见文]的[公式:见文]的[公式:见文]的[公式:见文]的[顶点着色]满足由每一组相同颜色的顶点所生成的每一个诱导子图的每一个分量形成一棵最大度不大于[公式:如果每一对相同颜色的顶点集合的基数之差不超过[公式:见文本],则称为公平。强公平顶点[公式:见文]-[公式:见文]的树性,用[公式:见文]表示,定义为满足[公式:见文]的最小正整数[公式:见文],它允许每个整数[公式:见文]具有[公式:见文]的公平[公式:见文]-树顶点着色。图的强均衡顶点(公式:见文本)-树性在图论应用中非常有用,例如并行存储系统的负载平衡,构造时间表和调度。本文给出了具有[公式:见文]顶点的任意图[公式:见文]和具有[公式:见文]的给定整数[公式:见文]的紧上界和下界,并分别用[公式:见文]、[公式:见文]、[公式:见文]对极值图[公式:见文]进行了表征。在上述极值结果的基础上,我们进一步得到了给定整数[公式:见文]的顶点[公式:见文]与[公式:见文]的图[公式:见文]的[公式:见文]的[公式:见文]的[诺德豪斯-加德姆型结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Nordhaus–Gaddum-Type Results for the Strong Equitable Vertex k-Arboricity of Graphs
For a graph [Formula: see text] and positive integers [Formula: see text], [Formula: see text], a [Formula: see text]-tree-vertex coloring of [Formula: see text] refers to a [Formula: see text]-vertex coloring of [Formula: see text] satisfying every component of each induced subgraph generated by every set of vertices with the same color forms a tree with maximum degree not larger than [Formula: see text], and it is called equitable if the difference between the cardinalities of every pair of sets of vertices with the same color is at most [Formula: see text]. The strong equitable vertex [Formula: see text]-arboricity of [Formula: see text], denoted by [Formula: see text], is defined as the least positive integer [Formula: see text] satisfying [Formula: see text], which admits an equitable [Formula: see text]-tree-vertex coloring for each integer [Formula: see text] with [Formula: see text]. The strong equitable vertex [Formula: see text]-arboricity of a graph is very useful in graph theory applications such as load balance in parallel memory systems, constructing timetables and scheduling. In this paper, we present the tight upper and lower bounds on [Formula: see text] for an arbitrary graph [Formula: see text] with [Formula: see text] vertices and a given integer [Formula: see text] with [Formula: see text], and we characterize the extremal graphs [Formula: see text] with [Formula: see text], [Formula: see text], [Formula: see text], respectively. Based on the above extremal results, we further obtain the Nordhaus–Gaddum-type results for [Formula: see text] of graphs [Formula: see text] with [Formula: see text] vertices for a given integer [Formula: see text] with [Formula: see text].
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
JOURNAL OF INTERCONNECTION NETWORKS
JOURNAL OF INTERCONNECTION NETWORKS COMPUTER SCIENCE, THEORY & METHODS-
自引率
14.30%
发文量
121
期刊介绍: The Journal of Interconnection Networks (JOIN) is an international scientific journal dedicated to advancing the state-of-the-art of interconnection networks. The journal addresses all aspects of interconnection networks including their theory, analysis, design, implementation and application, and corresponding issues of communication, computing and function arising from (or applied to) a variety of multifaceted networks. Interconnection problems occur at different levels in the hardware and software design of communicating entities in integrated circuits, multiprocessors, multicomputers, and communication networks as diverse as telephone systems, cable network systems, computer networks, mobile communication networks, satellite network systems, the Internet and biological systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信