低速球磨法生产纳米二氧化硅砂工艺参数优化

Q4 Engineering
Zulkhairi Rizlan, O. Mamat
{"title":"低速球磨法生产纳米二氧化硅砂工艺参数优化","authors":"Zulkhairi Rizlan, O. Mamat","doi":"10.1155/2014/802459","DOIUrl":null,"url":null,"abstract":"Experiments are designed using Taguchi method to find the optimum parameters for silica sand nanoparticles production using low speed ball milling. Orthogonal array and signal-to-noise ratio are applied to study performance characteristics of machining parameters which are the ball to powder weight ratio, volume of milling jar, and rotation speed. Results obtained from signal-to-noise ratio analysis showed that ball to powder weight ratio is the most influential parameter.","PeriodicalId":31263,"journal":{"name":"工程设计学报","volume":"2 1","pages":"1-4"},"PeriodicalIF":0.0000,"publicationDate":"2014-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"Process Parameters Optimization of Silica Sand Nanoparticles Production Using Low Speed Ball Milling Method\",\"authors\":\"Zulkhairi Rizlan, O. Mamat\",\"doi\":\"10.1155/2014/802459\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Experiments are designed using Taguchi method to find the optimum parameters for silica sand nanoparticles production using low speed ball milling. Orthogonal array and signal-to-noise ratio are applied to study performance characteristics of machining parameters which are the ball to powder weight ratio, volume of milling jar, and rotation speed. Results obtained from signal-to-noise ratio analysis showed that ball to powder weight ratio is the most influential parameter.\",\"PeriodicalId\":31263,\"journal\":{\"name\":\"工程设计学报\",\"volume\":\"2 1\",\"pages\":\"1-4\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-02-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"工程设计学报\",\"FirstCategoryId\":\"1087\",\"ListUrlMain\":\"https://doi.org/10.1155/2014/802459\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"工程设计学报","FirstCategoryId":"1087","ListUrlMain":"https://doi.org/10.1155/2014/802459","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 15

摘要

采用田口法设计实验,寻找低速球磨法制备纳米二氧化硅砂的最佳工艺参数。采用正交阵列法和信噪比法研究了球粉重量比、磨缸体积和转速等加工参数的性能特征。信噪比分析结果表明,球粉重量比是影响最大的参数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Process Parameters Optimization of Silica Sand Nanoparticles Production Using Low Speed Ball Milling Method
Experiments are designed using Taguchi method to find the optimum parameters for silica sand nanoparticles production using low speed ball milling. Orthogonal array and signal-to-noise ratio are applied to study performance characteristics of machining parameters which are the ball to powder weight ratio, volume of milling jar, and rotation speed. Results obtained from signal-to-noise ratio analysis showed that ball to powder weight ratio is the most influential parameter.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
工程设计学报
工程设计学报 Engineering-Engineering (miscellaneous)
CiteScore
0.60
自引率
0.00%
发文量
2447
审稿时长
14 weeks
期刊介绍: Chinese Journal of Engineering Design is a reputable journal published by Zhejiang University Press Co., Ltd. It was founded in December, 1994 as the first internationally cooperative journal in the area of engineering design research. Administrated by the Ministry of Education of China, it is sponsored by both Zhejiang University and Chinese Society of Mechanical Engineering. Zhejiang University Press Co., Ltd. is fully responsible for its bimonthly domestic and oversea publication. Its page is in A4 size. This journal is devoted to reporting most up-to-date achievements of engineering design researches and therefore, to promote the communications of academic researches and their applications to industry. Achievments of great creativity and practicablity are extraordinarily desirable. Aiming at supplying designers, developers and researchers of diversified technical artifacts with valuable references, its content covers all aspects of design theory and methodology, as well as its enabling environment, for instance, creative design, concurrent design, conceptual design, intelligent design, web-based design, reverse engineering design, industrial design, design optimization, tribology, design by biological analogy, virtual reality in design, structural analysis and design, design knowledge representation, design knowledge management, design decision-making systems, etc.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信