双调和超曲面的表征

Q4 Mathematics
S. Srivastava, K. Sood, K. Srivastava
{"title":"双调和超曲面的表征","authors":"S. Srivastava, K. Sood, K. Srivastava","doi":"10.15421/242211","DOIUrl":null,"url":null,"abstract":"The main purpose of this paper is to study biharmonic hypersurface in a quasi-paraSasakian manifold $\\mathbb{Q}^{2m+1}$. Biharmonic hypersurfaces are special cases of biharmonic maps and biharmonic maps are the critical points of the bienergy functional. The condition of biharmonicity for non-degenerate hypersurfaces in $\\mathbb{Q}^{2m+1}$ is investigated for both cases: either the characteristic vector field of $\\mathbb{Q}^{2m+1}$ is the unit normal vector field to the hypersurface or it belongs to the tangent space of the hypersurface. Some relevant examples are also illustrated.","PeriodicalId":52827,"journal":{"name":"Researches in Mathematics","volume":"4 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Characterization of Biharmonic Hypersurface\",\"authors\":\"S. Srivastava, K. Sood, K. Srivastava\",\"doi\":\"10.15421/242211\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The main purpose of this paper is to study biharmonic hypersurface in a quasi-paraSasakian manifold $\\\\mathbb{Q}^{2m+1}$. Biharmonic hypersurfaces are special cases of biharmonic maps and biharmonic maps are the critical points of the bienergy functional. The condition of biharmonicity for non-degenerate hypersurfaces in $\\\\mathbb{Q}^{2m+1}$ is investigated for both cases: either the characteristic vector field of $\\\\mathbb{Q}^{2m+1}$ is the unit normal vector field to the hypersurface or it belongs to the tangent space of the hypersurface. Some relevant examples are also illustrated.\",\"PeriodicalId\":52827,\"journal\":{\"name\":\"Researches in Mathematics\",\"volume\":\"4 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Researches in Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15421/242211\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Researches in Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15421/242211","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

本文的主要目的是研究拟parasasakian流形$\mathbb{Q}^{2m+1}$上的双调和超曲面。双调和超曲面是双调和映射的特殊情况,双调和映射是生物能泛函的临界点。研究了$\mathbb{Q}^{2m+1}$中非简并超曲面双谐性的条件:$\mathbb{Q}^{2m+1}$的特征向量场是超曲面的单位法向量场或属于超曲面的切空间。并举例说明了一些相关的例子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Characterization of Biharmonic Hypersurface
The main purpose of this paper is to study biharmonic hypersurface in a quasi-paraSasakian manifold $\mathbb{Q}^{2m+1}$. Biharmonic hypersurfaces are special cases of biharmonic maps and biharmonic maps are the critical points of the bienergy functional. The condition of biharmonicity for non-degenerate hypersurfaces in $\mathbb{Q}^{2m+1}$ is investigated for both cases: either the characteristic vector field of $\mathbb{Q}^{2m+1}$ is the unit normal vector field to the hypersurface or it belongs to the tangent space of the hypersurface. Some relevant examples are also illustrated.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.50
自引率
0.00%
发文量
8
审稿时长
16 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信