通过Lovasz局部引理的均匀抽样

Heng Guo, M. Jerrum, Jingcheng Liu
{"title":"通过Lovasz局部引理的均匀抽样","authors":"Heng Guo, M. Jerrum, Jingcheng Liu","doi":"10.1145/3055399.3055410","DOIUrl":null,"url":null,"abstract":"We propose a new algorithmic framework, called “partial rejection sampling”, to draw samples exactly from a product distribution, conditioned on none of a number of bad events occurring. Our framework builds (perhaps surprising) new connections between the variable framework of the Lovász Local Lemma and some clas- sical sampling algorithms such as the “cycle-popping” algorithm for rooted spanning trees by Wilson. Among other applications, we discover new algorithms to sample satisfying assignments of k-CNF formulas with bounded variable occurrences.","PeriodicalId":20615,"journal":{"name":"Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing","volume":"4 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2016-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"76","resultStr":"{\"title\":\"Uniform sampling through the Lovasz local lemma\",\"authors\":\"Heng Guo, M. Jerrum, Jingcheng Liu\",\"doi\":\"10.1145/3055399.3055410\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a new algorithmic framework, called “partial rejection sampling”, to draw samples exactly from a product distribution, conditioned on none of a number of bad events occurring. Our framework builds (perhaps surprising) new connections between the variable framework of the Lovász Local Lemma and some clas- sical sampling algorithms such as the “cycle-popping” algorithm for rooted spanning trees by Wilson. Among other applications, we discover new algorithms to sample satisfying assignments of k-CNF formulas with bounded variable occurrences.\",\"PeriodicalId\":20615,\"journal\":{\"name\":\"Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing\",\"volume\":\"4 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-11-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"76\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3055399.3055410\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3055399.3055410","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 76

摘要

我们提出了一种新的算法框架,称为“部分拒绝抽样”,以不发生任何不良事件为条件,从产品分布中准确抽取样本。我们的框架在Lovász局部引理的变量框架和一些经典的采样算法之间建立了(可能令人惊讶的)新的联系,例如Wilson针对有根生成树的“跳出循环”算法。在其他应用中,我们发现了新的算法来采样具有有界变量出现的k-CNF公式的满意赋值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Uniform sampling through the Lovasz local lemma
We propose a new algorithmic framework, called “partial rejection sampling”, to draw samples exactly from a product distribution, conditioned on none of a number of bad events occurring. Our framework builds (perhaps surprising) new connections between the variable framework of the Lovász Local Lemma and some clas- sical sampling algorithms such as the “cycle-popping” algorithm for rooted spanning trees by Wilson. Among other applications, we discover new algorithms to sample satisfying assignments of k-CNF formulas with bounded variable occurrences.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信