{"title":"基于版本间和版本内预测场景的软件故障预测","authors":"A. Mishra, Meenu Singla","doi":"10.4018/ijossp.287611","DOIUrl":null,"url":null,"abstract":"Software quality engineering applied numerous techniques for assuring the quality of software, namely testing, verification, validation, fault tolerance, and fault prediction of the software. The machine learning techniques facilitate the identification of software modules as faulty or non-faulty. In most of the research, these approaches predict the fault-prone module in the same release of the software. Although, the model is found to be more efficient and validated when training and tested data are taken from previous and subsequent releases of the software respectively. The contribution of this paper is to predict the faults in two scenarios i.e. inter and intra release prediction. The comparison of both intra and inter-release fault prediction by computing various performance matrices using machine learning methods shows that intra-release prediction is having better accuracy compared to inter-releases prediction across all the releases. Also, but both the scenarios achieve good results in comparison to existing research work.","PeriodicalId":53605,"journal":{"name":"International Journal of Open Source Software and Processes","volume":"7 1","pages":"1-18"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Software Fault Prediction on Inter- and Intra-Release Prediction Scenarios\",\"authors\":\"A. Mishra, Meenu Singla\",\"doi\":\"10.4018/ijossp.287611\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Software quality engineering applied numerous techniques for assuring the quality of software, namely testing, verification, validation, fault tolerance, and fault prediction of the software. The machine learning techniques facilitate the identification of software modules as faulty or non-faulty. In most of the research, these approaches predict the fault-prone module in the same release of the software. Although, the model is found to be more efficient and validated when training and tested data are taken from previous and subsequent releases of the software respectively. The contribution of this paper is to predict the faults in two scenarios i.e. inter and intra release prediction. The comparison of both intra and inter-release fault prediction by computing various performance matrices using machine learning methods shows that intra-release prediction is having better accuracy compared to inter-releases prediction across all the releases. Also, but both the scenarios achieve good results in comparison to existing research work.\",\"PeriodicalId\":53605,\"journal\":{\"name\":\"International Journal of Open Source Software and Processes\",\"volume\":\"7 1\",\"pages\":\"1-18\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Open Source Software and Processes\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/ijossp.287611\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Open Source Software and Processes","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/ijossp.287611","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Computer Science","Score":null,"Total":0}
A Software Fault Prediction on Inter- and Intra-Release Prediction Scenarios
Software quality engineering applied numerous techniques for assuring the quality of software, namely testing, verification, validation, fault tolerance, and fault prediction of the software. The machine learning techniques facilitate the identification of software modules as faulty or non-faulty. In most of the research, these approaches predict the fault-prone module in the same release of the software. Although, the model is found to be more efficient and validated when training and tested data are taken from previous and subsequent releases of the software respectively. The contribution of this paper is to predict the faults in two scenarios i.e. inter and intra release prediction. The comparison of both intra and inter-release fault prediction by computing various performance matrices using machine learning methods shows that intra-release prediction is having better accuracy compared to inter-releases prediction across all the releases. Also, but both the scenarios achieve good results in comparison to existing research work.
期刊介绍:
The International Journal of Open Source Software and Processes (IJOSSP) publishes high-quality peer-reviewed and original research articles on the large field of open source software and processes. This wide area entails many intriguing question and facets, including the special development process performed by a large number of geographically dispersed programmers, community issues like coordination and communication, motivations of the participants, and also economic and legal issues. Beyond this topic, open source software is an example of a highly distributed innovation process led by the users. Therefore, many aspects have relevance beyond the realm of software and its development. In this tradition, IJOSSP also publishes papers on these topics. IJOSSP is a multi-disciplinary outlet, and welcomes submissions from all relevant fields of research and applying a multitude of research approaches.