从亮场显微镜载玻片图像聚焦堆栈中自动检测疟疾感染红细胞

G. Gopakumar, M. Swetha, G. S. Siva, G. R. S. Subrahmanyam
{"title":"从亮场显微镜载玻片图像聚焦堆栈中自动检测疟疾感染红细胞","authors":"G. Gopakumar, M. Swetha, G. S. Siva, G. R. S. Subrahmanyam","doi":"10.1145/3009977.3010024","DOIUrl":null,"url":null,"abstract":"Malaria is a deadly infectious disease affecting red blood cells in humans due to the protozoan of type Plasmodium. In 2015, there is an estimated death toll of 438, 000 patients out of the total 214 million malaria cases reported world-wide. Thus, building an accurate automatic system for detecting the malarial cases is beneficial and has huge medical value. This paper addresses the detection of Plasmodium Falciparum infected RBCs from Leishman's stained microscope slide images. Unlike the traditional way of examining a single focused image to detect the parasite, we make use of a focus stack of images collected using a bright field microscope. Rather than the conventional way of extracting the specific features we opt for using Convolutional Neural Network that can directly operate on images bypassing the need for hand-engineered features. We work with image patches at the suspected parasite location there by avoiding the need for cell segmentation. We experiment, report and compare the detection rate received when only a single focused image is used and when operated on the focus stack of images. Altogether the proposed novel approach results in highly accurate malaria detection.","PeriodicalId":93806,"journal":{"name":"Proceedings. Indian Conference on Computer Vision, Graphics & Image Processing","volume":"94 1","pages":"16:1-16:7"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Automatic detection of Malaria infected RBCs from a focus stack of bright field microscope slide images\",\"authors\":\"G. Gopakumar, M. Swetha, G. S. Siva, G. R. S. Subrahmanyam\",\"doi\":\"10.1145/3009977.3010024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Malaria is a deadly infectious disease affecting red blood cells in humans due to the protozoan of type Plasmodium. In 2015, there is an estimated death toll of 438, 000 patients out of the total 214 million malaria cases reported world-wide. Thus, building an accurate automatic system for detecting the malarial cases is beneficial and has huge medical value. This paper addresses the detection of Plasmodium Falciparum infected RBCs from Leishman's stained microscope slide images. Unlike the traditional way of examining a single focused image to detect the parasite, we make use of a focus stack of images collected using a bright field microscope. Rather than the conventional way of extracting the specific features we opt for using Convolutional Neural Network that can directly operate on images bypassing the need for hand-engineered features. We work with image patches at the suspected parasite location there by avoiding the need for cell segmentation. We experiment, report and compare the detection rate received when only a single focused image is used and when operated on the focus stack of images. Altogether the proposed novel approach results in highly accurate malaria detection.\",\"PeriodicalId\":93806,\"journal\":{\"name\":\"Proceedings. Indian Conference on Computer Vision, Graphics & Image Processing\",\"volume\":\"94 1\",\"pages\":\"16:1-16:7\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-12-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings. Indian Conference on Computer Vision, Graphics & Image Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3009977.3010024\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. Indian Conference on Computer Vision, Graphics & Image Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3009977.3010024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

疟疾是一种影响人类红细胞的致命传染病,是由疟原虫型原生动物引起的。2015年,在全球报告的2.14亿疟疾病例中,估计有43.8万名患者死亡。因此,建立一个准确的疟疾病例自动检测系统是有益的,具有巨大的医学价值。本文讨论了利用利什曼染色显微镜载玻片图像检测恶性疟原虫感染红细胞的方法。与传统的检查单个聚焦图像来检测寄生虫的方法不同,我们利用明亮场显微镜收集的聚焦图像堆栈。与传统的提取特定特征的方法不同,我们选择使用卷积神经网络,它可以直接对图像进行操作,而无需手工设计特征。我们在疑似寄生虫的位置使用图像补丁,避免了细胞分割的需要。我们实验、报告并比较了仅使用单个聚焦图像和在图像聚焦堆栈上操作时收到的检测率。总的来说,提出的新方法导致高度准确的疟疾检测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Automatic detection of Malaria infected RBCs from a focus stack of bright field microscope slide images
Malaria is a deadly infectious disease affecting red blood cells in humans due to the protozoan of type Plasmodium. In 2015, there is an estimated death toll of 438, 000 patients out of the total 214 million malaria cases reported world-wide. Thus, building an accurate automatic system for detecting the malarial cases is beneficial and has huge medical value. This paper addresses the detection of Plasmodium Falciparum infected RBCs from Leishman's stained microscope slide images. Unlike the traditional way of examining a single focused image to detect the parasite, we make use of a focus stack of images collected using a bright field microscope. Rather than the conventional way of extracting the specific features we opt for using Convolutional Neural Network that can directly operate on images bypassing the need for hand-engineered features. We work with image patches at the suspected parasite location there by avoiding the need for cell segmentation. We experiment, report and compare the detection rate received when only a single focused image is used and when operated on the focus stack of images. Altogether the proposed novel approach results in highly accurate malaria detection.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信