脉冲随机反应扩散系统的均方稳定性

Qi Luo, Yutian Zhang
{"title":"脉冲随机反应扩散系统的均方稳定性","authors":"Qi Luo, Yutian Zhang","doi":"10.1109/ICIST.2011.5765181","DOIUrl":null,"url":null,"abstract":"In this paper, based on Lyapunov function method and stochastic analysis theory, the stability of a class of impulsive stochastic reaction diffusion differential equations is investigated and some new criteria are obtained ensuring the mean square stability of trivial solution. As an application, a class of semi-linear stochastic impulsive reaction diffusion differential equations has been discussed to show the effectiveness of our results. This work is ended with an illustrative example demonstrating the valid of the provided criterion.","PeriodicalId":6408,"journal":{"name":"2009 International Conference on Environmental Science and Information Application Technology","volume":"3 1","pages":"1179-1182"},"PeriodicalIF":0.0000,"publicationDate":"2011-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mean square stability of impulsive stochastic reaction diffusion systems\",\"authors\":\"Qi Luo, Yutian Zhang\",\"doi\":\"10.1109/ICIST.2011.5765181\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, based on Lyapunov function method and stochastic analysis theory, the stability of a class of impulsive stochastic reaction diffusion differential equations is investigated and some new criteria are obtained ensuring the mean square stability of trivial solution. As an application, a class of semi-linear stochastic impulsive reaction diffusion differential equations has been discussed to show the effectiveness of our results. This work is ended with an illustrative example demonstrating the valid of the provided criterion.\",\"PeriodicalId\":6408,\"journal\":{\"name\":\"2009 International Conference on Environmental Science and Information Application Technology\",\"volume\":\"3 1\",\"pages\":\"1179-1182\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-03-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 International Conference on Environmental Science and Information Application Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIST.2011.5765181\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 International Conference on Environmental Science and Information Application Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIST.2011.5765181","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文基于Lyapunov函数方法和随机分析理论,研究了一类脉冲随机反应扩散微分方程的稳定性,得到了保证其平凡解均方稳定性的一些新判据。作为应用,我们讨论了一类半线性随机脉冲反应扩散微分方程,以证明我们的结果的有效性。本工作最后以一个说明性的例子来证明所提供准则的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Mean square stability of impulsive stochastic reaction diffusion systems
In this paper, based on Lyapunov function method and stochastic analysis theory, the stability of a class of impulsive stochastic reaction diffusion differential equations is investigated and some new criteria are obtained ensuring the mean square stability of trivial solution. As an application, a class of semi-linear stochastic impulsive reaction diffusion differential equations has been discussed to show the effectiveness of our results. This work is ended with an illustrative example demonstrating the valid of the provided criterion.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信