{"title":"CNN模型转移到无人机图像灾害事件分类中的超参数优化系统配置","authors":"Supaporn Bunrit, Nittaya Kerdprasop, Kittisak Kerdprasop","doi":"10.18178/joig.11.3.263-270","DOIUrl":null,"url":null,"abstract":"Deep learning and computer vision-based approaches incorporated with the evolution of the relevant technologies of Unmanned Aerial Vehicles (UAVs) and drones have significantly motivated the advancements of disaster management applications. This research studied a classification method for disaster event identification from UAV images that is suitable for disaster monitoring. A Convolution Neural Network (CNN) of GoogleNet models that were pretrained from ImageNet and Place365 datasets was explored to find the appropriate one for fine-tuning to classify the disaster events. In order to get the optimal performance, a systematic configuration for searching the hyperparameters in fine-tuning the CNN model was proposed. The top three hyperparameters that affect the performance, which are the initial learning rate, the number of epochs, and the minibatch size, were systematically set and tuned for each configuration. The proposed approach consists of five stages, during which three types of trials were used to monitor different sets of the hyperparameters. The experimental result revealed that by applying the proposed approach the model performance can increase up to 5%. The optimal performance achieved was 98.77 percent accuracy. For UAV/drone applications, where a small onboard model is preferred, GoogleNet that is quite small in model size and has a good structure for further fine tuning is suitable to deploy.","PeriodicalId":36336,"journal":{"name":"中国图象图形学报","volume":"60 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Systematic Configuration for Hyperparameters Optimization in Transferring of CNN Model to Disaster Events Classification from UAV Images\",\"authors\":\"Supaporn Bunrit, Nittaya Kerdprasop, Kittisak Kerdprasop\",\"doi\":\"10.18178/joig.11.3.263-270\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Deep learning and computer vision-based approaches incorporated with the evolution of the relevant technologies of Unmanned Aerial Vehicles (UAVs) and drones have significantly motivated the advancements of disaster management applications. This research studied a classification method for disaster event identification from UAV images that is suitable for disaster monitoring. A Convolution Neural Network (CNN) of GoogleNet models that were pretrained from ImageNet and Place365 datasets was explored to find the appropriate one for fine-tuning to classify the disaster events. In order to get the optimal performance, a systematic configuration for searching the hyperparameters in fine-tuning the CNN model was proposed. The top three hyperparameters that affect the performance, which are the initial learning rate, the number of epochs, and the minibatch size, were systematically set and tuned for each configuration. The proposed approach consists of five stages, during which three types of trials were used to monitor different sets of the hyperparameters. The experimental result revealed that by applying the proposed approach the model performance can increase up to 5%. The optimal performance achieved was 98.77 percent accuracy. For UAV/drone applications, where a small onboard model is preferred, GoogleNet that is quite small in model size and has a good structure for further fine tuning is suitable to deploy.\",\"PeriodicalId\":36336,\"journal\":{\"name\":\"中国图象图形学报\",\"volume\":\"60 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"中国图象图形学报\",\"FirstCategoryId\":\"1093\",\"ListUrlMain\":\"https://doi.org/10.18178/joig.11.3.263-270\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"中国图象图形学报","FirstCategoryId":"1093","ListUrlMain":"https://doi.org/10.18178/joig.11.3.263-270","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Computer Science","Score":null,"Total":0}
Systematic Configuration for Hyperparameters Optimization in Transferring of CNN Model to Disaster Events Classification from UAV Images
Deep learning and computer vision-based approaches incorporated with the evolution of the relevant technologies of Unmanned Aerial Vehicles (UAVs) and drones have significantly motivated the advancements of disaster management applications. This research studied a classification method for disaster event identification from UAV images that is suitable for disaster monitoring. A Convolution Neural Network (CNN) of GoogleNet models that were pretrained from ImageNet and Place365 datasets was explored to find the appropriate one for fine-tuning to classify the disaster events. In order to get the optimal performance, a systematic configuration for searching the hyperparameters in fine-tuning the CNN model was proposed. The top three hyperparameters that affect the performance, which are the initial learning rate, the number of epochs, and the minibatch size, were systematically set and tuned for each configuration. The proposed approach consists of five stages, during which three types of trials were used to monitor different sets of the hyperparameters. The experimental result revealed that by applying the proposed approach the model performance can increase up to 5%. The optimal performance achieved was 98.77 percent accuracy. For UAV/drone applications, where a small onboard model is preferred, GoogleNet that is quite small in model size and has a good structure for further fine tuning is suitable to deploy.
中国图象图形学报Computer Science-Computer Graphics and Computer-Aided Design
CiteScore
1.20
自引率
0.00%
发文量
6776
期刊介绍:
Journal of Image and Graphics (ISSN 1006-8961, CN 11-3758/TB, CODEN ZTTXFZ) is an authoritative academic journal supervised by the Chinese Academy of Sciences and co-sponsored by the Institute of Space and Astronautical Information Innovation of the Chinese Academy of Sciences (ISIAS), the Chinese Society of Image and Graphics (CSIG), and the Beijing Institute of Applied Physics and Computational Mathematics (BIAPM). The journal integrates high-tech theories, technical methods and industrialisation of applied research results in computer image graphics, and mainly publishes innovative and high-level scientific research papers on basic and applied research in image graphics science and its closely related fields. The form of papers includes reviews, technical reports, project progress, academic news, new technology reviews, new product introduction and industrialisation research. The content covers a wide range of fields such as image analysis and recognition, image understanding and computer vision, computer graphics, virtual reality and augmented reality, system simulation, animation, etc., and theme columns are opened according to the research hotspots and cutting-edge topics.
Journal of Image and Graphics reaches a wide range of readers, including scientific and technical personnel, enterprise supervisors, and postgraduates and college students of colleges and universities engaged in the fields of national defence, military, aviation, aerospace, communications, electronics, automotive, agriculture, meteorology, environmental protection, remote sensing, mapping, oil field, construction, transportation, finance, telecommunications, education, medical care, film and television, and art.
Journal of Image and Graphics is included in many important domestic and international scientific literature database systems, including EBSCO database in the United States, JST database in Japan, Scopus database in the Netherlands, China Science and Technology Thesis Statistics and Analysis (Annual Research Report), China Science Citation Database (CSCD), China Academic Journal Network Publishing Database (CAJD), and China Academic Journal Network Publishing Database (CAJD). China Science Citation Database (CSCD), China Academic Journals Network Publishing Database (CAJD), China Academic Journal Abstracts, Chinese Science Abstracts (Series A), China Electronic Science Abstracts, Chinese Core Journals Abstracts, Chinese Academic Journals on CD-ROM, and China Academic Journals Comprehensive Evaluation Database.