两相流模型松弛过程的研究

J. Bussac
{"title":"两相流模型松弛过程的研究","authors":"J. Bussac","doi":"10.1051/proc/202372002","DOIUrl":null,"url":null,"abstract":"This work concerns the analysis of the relaxation processes toward thermodynamical equilibrium arising in a compressible immiscible two-phase flow. Classically the relaxation processes are taken into account through dynamical systems which are coupled to the dynamics of the flow. The present paper compares two types of source terms which are commonly used: a BGK-like system and a mixture entropy gradient type. For both systems, main properties are investigated (agreement with second principle of thermodynamics, existence of solutions, maximum principle,...) and numerical experiments illustrate their asymptotic behaviour.","PeriodicalId":53260,"journal":{"name":"ESAIM Proceedings and Surveys","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Study of relaxation processes in a two-phase flow model\",\"authors\":\"J. Bussac\",\"doi\":\"10.1051/proc/202372002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work concerns the analysis of the relaxation processes toward thermodynamical equilibrium arising in a compressible immiscible two-phase flow. Classically the relaxation processes are taken into account through dynamical systems which are coupled to the dynamics of the flow. The present paper compares two types of source terms which are commonly used: a BGK-like system and a mixture entropy gradient type. For both systems, main properties are investigated (agreement with second principle of thermodynamics, existence of solutions, maximum principle,...) and numerical experiments illustrate their asymptotic behaviour.\",\"PeriodicalId\":53260,\"journal\":{\"name\":\"ESAIM Proceedings and Surveys\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ESAIM Proceedings and Surveys\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1051/proc/202372002\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ESAIM Proceedings and Surveys","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/proc/202372002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

这项工作涉及到在可压缩非混相两相流中产生的热力学平衡的松弛过程的分析。经典的弛豫过程是通过与流动动力学耦合的动力系统来考虑的。本文比较了两种常用的源项:类bgk系统和混合熵梯度类型。对于这两个系统,研究了它们的主要性质(符合热力学第二原理、解的存在性、极大值原理等),并通过数值实验证明了它们的渐近行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Study of relaxation processes in a two-phase flow model
This work concerns the analysis of the relaxation processes toward thermodynamical equilibrium arising in a compressible immiscible two-phase flow. Classically the relaxation processes are taken into account through dynamical systems which are coupled to the dynamics of the flow. The present paper compares two types of source terms which are commonly used: a BGK-like system and a mixture entropy gradient type. For both systems, main properties are investigated (agreement with second principle of thermodynamics, existence of solutions, maximum principle,...) and numerical experiments illustrate their asymptotic behaviour.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信