{"title":"对数正态分布和伽马分布的新修正Anderson Darling拟合优度检验","authors":"J. Neamvonk, Bumrungsak Phuenaree","doi":"10.24203/ajas.v10i6.7124","DOIUrl":null,"url":null,"abstract":"The purpose of this study is to present the new modified Anderson-Darling goodness of fit test, and compare to the efficiency of three tests; Kolmogorov Smirnov test, Anderson-Darling test and Zhang (2002) test. A simulation study is used to estimate the critical values at a significance level of 0.05. The type I error rate and test power are calculated using Monte Carlo simulation with 10,000 replicates. The data are generated from the specified distribution; i.e., Lognormal and Gamma distributions with sample size of 10, 20, 30, 50, 100 and 200. The results demonstrate that every test has control over the type I error probability. The new test has the highest power for two alternative hypotheses; Loglogistic and Logistic distributions. Moreover, when the alternative distribution is Normal distribution and the sample size is small, the new test has the highest power.","PeriodicalId":8497,"journal":{"name":"Asian Journal of Applied Sciences","volume":"6 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"New Modified Anderson Darling Goodness of Fit Test for Lognormal and Gamma distributions\",\"authors\":\"J. Neamvonk, Bumrungsak Phuenaree\",\"doi\":\"10.24203/ajas.v10i6.7124\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The purpose of this study is to present the new modified Anderson-Darling goodness of fit test, and compare to the efficiency of three tests; Kolmogorov Smirnov test, Anderson-Darling test and Zhang (2002) test. A simulation study is used to estimate the critical values at a significance level of 0.05. The type I error rate and test power are calculated using Monte Carlo simulation with 10,000 replicates. The data are generated from the specified distribution; i.e., Lognormal and Gamma distributions with sample size of 10, 20, 30, 50, 100 and 200. The results demonstrate that every test has control over the type I error probability. The new test has the highest power for two alternative hypotheses; Loglogistic and Logistic distributions. Moreover, when the alternative distribution is Normal distribution and the sample size is small, the new test has the highest power.\",\"PeriodicalId\":8497,\"journal\":{\"name\":\"Asian Journal of Applied Sciences\",\"volume\":\"6 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Asian Journal of Applied Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.24203/ajas.v10i6.7124\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asian Journal of Applied Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24203/ajas.v10i6.7124","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
New Modified Anderson Darling Goodness of Fit Test for Lognormal and Gamma distributions
The purpose of this study is to present the new modified Anderson-Darling goodness of fit test, and compare to the efficiency of three tests; Kolmogorov Smirnov test, Anderson-Darling test and Zhang (2002) test. A simulation study is used to estimate the critical values at a significance level of 0.05. The type I error rate and test power are calculated using Monte Carlo simulation with 10,000 replicates. The data are generated from the specified distribution; i.e., Lognormal and Gamma distributions with sample size of 10, 20, 30, 50, 100 and 200. The results demonstrate that every test has control over the type I error probability. The new test has the highest power for two alternative hypotheses; Loglogistic and Logistic distributions. Moreover, when the alternative distribution is Normal distribution and the sample size is small, the new test has the highest power.