用电沉积法表征掺镁氧化锌在太阳能光伏电池中的电压

A. Alcázar, M. Fernan, K.G. Ngo, A. Santos, E. Chua, M. Pacis
{"title":"用电沉积法表征掺镁氧化锌在太阳能光伏电池中的电压","authors":"A. Alcázar, M. Fernan, K.G. Ngo, A. Santos, E. Chua, M. Pacis","doi":"10.1109/HNICEM48295.2019.9073593","DOIUrl":null,"url":null,"abstract":"The research paper adapted the study of Rajpal and Kumar (2016). The Magnesium (Mg)-doped Zinc Oxide (ZnO) was prepared using the electrodeposition method. The samples obtained from the experiment were then collated to observe the photoconductivity value and the percentage of Voltage Regulation of the plates. Three (3) different tilt angle orientation were utilized in gathering the data of the Voltage Regulation percentage (%VR) and photoconductivity. The photoconductivity value acquired from the undoped plate is 0.7083 while, for the doped plates are 0.8438V, 0.6897V and 0.7204V. On the other hand, the %VR acquired for 0⁰, 13⁰ and 20° were 1.283%, 5.820% and 3.456%, respectively. Moreover, the percent Battery Charge collated from the experiment are 0.39%, -1.20% and 1.11%, respectively. Further, the experiments showed that sun exposure and temperature have a significant impact on the electrical conductivity and output of the cells.","PeriodicalId":6733,"journal":{"name":"2019 IEEE 11th International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment, and Management ( HNICEM )","volume":"6 1","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Voltage Characterization of Magnesium-doped Zinc Oxide by Electrodeposition Method for Solar Photovoltaic (PV) Cells\",\"authors\":\"A. Alcázar, M. Fernan, K.G. Ngo, A. Santos, E. Chua, M. Pacis\",\"doi\":\"10.1109/HNICEM48295.2019.9073593\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The research paper adapted the study of Rajpal and Kumar (2016). The Magnesium (Mg)-doped Zinc Oxide (ZnO) was prepared using the electrodeposition method. The samples obtained from the experiment were then collated to observe the photoconductivity value and the percentage of Voltage Regulation of the plates. Three (3) different tilt angle orientation were utilized in gathering the data of the Voltage Regulation percentage (%VR) and photoconductivity. The photoconductivity value acquired from the undoped plate is 0.7083 while, for the doped plates are 0.8438V, 0.6897V and 0.7204V. On the other hand, the %VR acquired for 0⁰, 13⁰ and 20° were 1.283%, 5.820% and 3.456%, respectively. Moreover, the percent Battery Charge collated from the experiment are 0.39%, -1.20% and 1.11%, respectively. Further, the experiments showed that sun exposure and temperature have a significant impact on the electrical conductivity and output of the cells.\",\"PeriodicalId\":6733,\"journal\":{\"name\":\"2019 IEEE 11th International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment, and Management ( HNICEM )\",\"volume\":\"6 1\",\"pages\":\"1-5\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE 11th International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment, and Management ( HNICEM )\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/HNICEM48295.2019.9073593\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 11th International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment, and Management ( HNICEM )","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HNICEM48295.2019.9073593","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

该研究论文改编了Rajpal和Kumar(2016)的研究。采用电沉积法制备了镁掺杂氧化锌(ZnO)。然后对实验得到的样品进行整理,观察光导值和板的电压调节百分比。利用三种不同的倾斜角度采集了电压调节百分比(%VR)和光电导率的数据。未掺杂的光导率为0.7083,掺杂的光导率分别为0.8438V、0.6897V和0.7204V。另一方面,0⁰、13⁰和20°获得的%VR分别为1.283%、5.820%和3.456%。实验整理出的Battery Charge百分比分别为0.39%、-1.20%和1.11%。此外,实验表明,阳光照射和温度对电池的电导率和输出有显著影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Voltage Characterization of Magnesium-doped Zinc Oxide by Electrodeposition Method for Solar Photovoltaic (PV) Cells
The research paper adapted the study of Rajpal and Kumar (2016). The Magnesium (Mg)-doped Zinc Oxide (ZnO) was prepared using the electrodeposition method. The samples obtained from the experiment were then collated to observe the photoconductivity value and the percentage of Voltage Regulation of the plates. Three (3) different tilt angle orientation were utilized in gathering the data of the Voltage Regulation percentage (%VR) and photoconductivity. The photoconductivity value acquired from the undoped plate is 0.7083 while, for the doped plates are 0.8438V, 0.6897V and 0.7204V. On the other hand, the %VR acquired for 0⁰, 13⁰ and 20° were 1.283%, 5.820% and 3.456%, respectively. Moreover, the percent Battery Charge collated from the experiment are 0.39%, -1.20% and 1.11%, respectively. Further, the experiments showed that sun exposure and temperature have a significant impact on the electrical conductivity and output of the cells.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信