预紧集的逆像与Navier-Stokes方程的正则解

IF 0.6 Q3 MATHEMATICS
Shlapunov A.A., Tarkhanov N.N.
{"title":"预紧集的逆像与Navier-Stokes方程的正则解","authors":"Shlapunov A.A., Tarkhanov N.N.","doi":"10.35634/vm220208","DOIUrl":null,"url":null,"abstract":"We consider the initial value problem for the Navier–Stokes equations over ${\\mathbb R}^3 \\times [0,T]$ with time $T>0$ in the spatially periodic setting. We prove that it induces open injective mappings ${\\mathcal A}_s\\colon B^{s}_1 \\to B^{s-1}_2$ where $B^{s}_1$, $B^{s-1}_2$ are elements from scales of specially constructed function spaces of Bochner–Sobolev type parametrized with the smoothness index $s \\in \\mathbb N$. Finally, we prove that a map ${\\mathcal A}_s$ is surjective if and only if the inverse image ${\\mathcal A}_s ^{-1}(K)$ of any precompact set $K$ from the range of the map ${\\mathcal A}_s$ is bounded in the Bochner space $L^{\\mathfrak s} ([0,T], L^{{\\mathfrak r}} ({\\mathbb T}^3))$ with the Ladyzhenskaya–Prodi–Serrin numbers ${\\mathfrak s}$, ${\\mathfrak r}$.","PeriodicalId":43239,"journal":{"name":"Vestnik Udmurtskogo Universiteta-Matematika Mekhanika Kompyuternye Nauki","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Inverse image of precompact sets and regular solutions to the Navier–Stokes equations\",\"authors\":\"Shlapunov A.A., Tarkhanov N.N.\",\"doi\":\"10.35634/vm220208\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the initial value problem for the Navier–Stokes equations over ${\\\\mathbb R}^3 \\\\times [0,T]$ with time $T>0$ in the spatially periodic setting. We prove that it induces open injective mappings ${\\\\mathcal A}_s\\\\colon B^{s}_1 \\\\to B^{s-1}_2$ where $B^{s}_1$, $B^{s-1}_2$ are elements from scales of specially constructed function spaces of Bochner–Sobolev type parametrized with the smoothness index $s \\\\in \\\\mathbb N$. Finally, we prove that a map ${\\\\mathcal A}_s$ is surjective if and only if the inverse image ${\\\\mathcal A}_s ^{-1}(K)$ of any precompact set $K$ from the range of the map ${\\\\mathcal A}_s$ is bounded in the Bochner space $L^{\\\\mathfrak s} ([0,T], L^{{\\\\mathfrak r}} ({\\\\mathbb T}^3))$ with the Ladyzhenskaya–Prodi–Serrin numbers ${\\\\mathfrak s}$, ${\\\\mathfrak r}$.\",\"PeriodicalId\":43239,\"journal\":{\"name\":\"Vestnik Udmurtskogo Universiteta-Matematika Mekhanika Kompyuternye Nauki\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2022-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Vestnik Udmurtskogo Universiteta-Matematika Mekhanika Kompyuternye Nauki\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.35634/vm220208\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vestnik Udmurtskogo Universiteta-Matematika Mekhanika Kompyuternye Nauki","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.35634/vm220208","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

研究了时间$T>0$的空间周期条件下${\mathbb R}^3 \乘以[0,T]$上的Navier-Stokes方程的初值问题。证明了它诱导出开内射映射${\mathcal A}_s\冒号B^{s}_1 \到B^{s-1}_2$,其中$B^{s}_1$, $B^{s-1}_2$是特殊构造的Bochner-Sobolev型函数空间尺度上的元素,参数化为光滑指数$s \in \mathbb N$。最后,我们证明了映射${\mathcal a}_s$是满射的当且仅当在映射${\mathcal a}_s$的范围内的任意预紧集$K$的逆像${\mathcal a}_s ^{-1}(K)$在Bochner空间$L^{\mathfrak s} ([0,T], L^{\mathfrak r}} ({\mathbb T}^3))$与ladyzhenskaya - prodii - serrin数${\mathfrak s}$, ${\mathfrak r}$有界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Inverse image of precompact sets and regular solutions to the Navier–Stokes equations
We consider the initial value problem for the Navier–Stokes equations over ${\mathbb R}^3 \times [0,T]$ with time $T>0$ in the spatially periodic setting. We prove that it induces open injective mappings ${\mathcal A}_s\colon B^{s}_1 \to B^{s-1}_2$ where $B^{s}_1$, $B^{s-1}_2$ are elements from scales of specially constructed function spaces of Bochner–Sobolev type parametrized with the smoothness index $s \in \mathbb N$. Finally, we prove that a map ${\mathcal A}_s$ is surjective if and only if the inverse image ${\mathcal A}_s ^{-1}(K)$ of any precompact set $K$ from the range of the map ${\mathcal A}_s$ is bounded in the Bochner space $L^{\mathfrak s} ([0,T], L^{{\mathfrak r}} ({\mathbb T}^3))$ with the Ladyzhenskaya–Prodi–Serrin numbers ${\mathfrak s}$, ${\mathfrak r}$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.20
自引率
40.00%
发文量
27
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信