{"title":"代数类$p$-$wA(s,t)$算子的WEYL型定理","authors":"M. Rashid, T. Prasad","doi":"10.22190/fumi201214042r","DOIUrl":null,"url":null,"abstract":"In this paper, we study Weyl type theorems for $f(T)$, where $T$ is algebraically class $p$-$wA(s, t)$ operator with $0 < p \\leq 1$ and $0 < s, t, s + t \\leq 1$ and $f$ is an analytic function defined on an open neighborhood of the spectrum of $T$. Also we show that if $A , B^{*} \\in B(\\mathcal{H}) $ are class $p$-$wA(s, t)$ operators with $0 < p \\leq 1$ and $0 < s, t, s + t \\leq 1$,then generalized Weyl's theorem , a-Weyl's theorem, property $(w)$, property $(gw)$ and generalized a-Weyl's theorem holds for $f(d_{AB})$ for every $f \\in H(\\sigma(d_{AB})$, where $ d_{AB}$ denote the generalized derivation $\\delta_{AB}:B(\\mathcal{H})\\rightarrow B(\\mathcal{H})$ defined by $\\delta_{AB}(X)=AX-XB$ or the elementary operator $\\Delta_{AB}:B(\\mathcal{H})\\rightarrow B(\\mathcal{H})$ defined by $\\Delta_{AB}(X)=AXB-X$.","PeriodicalId":54148,"journal":{"name":"Facta Universitatis-Series Mathematics and Informatics","volume":"2 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2021-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"WEYL TYPE THEOREMS FOR ALGEBRIACALLY CLASS $p$-$wA(s,t)$ OPERATORS\",\"authors\":\"M. Rashid, T. Prasad\",\"doi\":\"10.22190/fumi201214042r\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we study Weyl type theorems for $f(T)$, where $T$ is algebraically class $p$-$wA(s, t)$ operator with $0 < p \\\\leq 1$ and $0 < s, t, s + t \\\\leq 1$ and $f$ is an analytic function defined on an open neighborhood of the spectrum of $T$. Also we show that if $A , B^{*} \\\\in B(\\\\mathcal{H}) $ are class $p$-$wA(s, t)$ operators with $0 < p \\\\leq 1$ and $0 < s, t, s + t \\\\leq 1$,then generalized Weyl's theorem , a-Weyl's theorem, property $(w)$, property $(gw)$ and generalized a-Weyl's theorem holds for $f(d_{AB})$ for every $f \\\\in H(\\\\sigma(d_{AB})$, where $ d_{AB}$ denote the generalized derivation $\\\\delta_{AB}:B(\\\\mathcal{H})\\\\rightarrow B(\\\\mathcal{H})$ defined by $\\\\delta_{AB}(X)=AX-XB$ or the elementary operator $\\\\Delta_{AB}:B(\\\\mathcal{H})\\\\rightarrow B(\\\\mathcal{H})$ defined by $\\\\Delta_{AB}(X)=AXB-X$.\",\"PeriodicalId\":54148,\"journal\":{\"name\":\"Facta Universitatis-Series Mathematics and Informatics\",\"volume\":\"2 1\",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2021-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Facta Universitatis-Series Mathematics and Informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22190/fumi201214042r\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Facta Universitatis-Series Mathematics and Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22190/fumi201214042r","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
本文研究了$f(T)$的Weyl型定理,其中$T$是具有$0 < p \leq 1$和$0 < s, t, s + t \leq 1$的代数类$p$ - $wA(s, t)$算子,$f$是定义在$T$谱的开放邻域上的解析函数。如果$A , B^{*} \in B(\mathcal{H}) $是$0 < p \leq 1$和$0 < s, t, s + t \leq 1$类的$p$ - $wA(s, t)$算子,那么对于$f(d_{AB})$,对于每一个$f \in H(\sigma(d_{AB})$,广义Weyl定理、a-Weyl定理、性质$(w)$、性质$(gw)$和广义a-Weyl定理都成立。其中$ d_{AB}$表示由$\delta_{AB}(X)=AX-XB$定义的广义派生$\delta_{AB}:B(\mathcal{H})\rightarrow B(\mathcal{H})$或由$\Delta_{AB}(X)=AXB-X$定义的初等运算符$\Delta_{AB}:B(\mathcal{H})\rightarrow B(\mathcal{H})$。
WEYL TYPE THEOREMS FOR ALGEBRIACALLY CLASS $p$-$wA(s,t)$ OPERATORS
In this paper, we study Weyl type theorems for $f(T)$, where $T$ is algebraically class $p$-$wA(s, t)$ operator with $0 < p \leq 1$ and $0 < s, t, s + t \leq 1$ and $f$ is an analytic function defined on an open neighborhood of the spectrum of $T$. Also we show that if $A , B^{*} \in B(\mathcal{H}) $ are class $p$-$wA(s, t)$ operators with $0 < p \leq 1$ and $0 < s, t, s + t \leq 1$,then generalized Weyl's theorem , a-Weyl's theorem, property $(w)$, property $(gw)$ and generalized a-Weyl's theorem holds for $f(d_{AB})$ for every $f \in H(\sigma(d_{AB})$, where $ d_{AB}$ denote the generalized derivation $\delta_{AB}:B(\mathcal{H})\rightarrow B(\mathcal{H})$ defined by $\delta_{AB}(X)=AX-XB$ or the elementary operator $\Delta_{AB}:B(\mathcal{H})\rightarrow B(\mathcal{H})$ defined by $\Delta_{AB}(X)=AXB-X$.