AnyOpt

Xiao Zhang, Tanmoy Sen, Zheyuan Zhang, Tim April, B. Chandrasekaran, D. Choffnes, Bruce M. Maggs, Haiying Shen, R. Sitaraman, Xiaowei Yang
{"title":"AnyOpt","authors":"Xiao Zhang, Tanmoy Sen, Zheyuan Zhang, Tim April, B. Chandrasekaran, D. Choffnes, Bruce M. Maggs, Haiying Shen, R. Sitaraman, Xiaowei Yang","doi":"10.1145/3452296.3472935","DOIUrl":null,"url":null,"abstract":"The key to optimizing the performance of an anycast-based system (e.g., the root DNS or a CDN) is choosing the right set of sites to announce the anycast prefix. One challenge here is predicting catchments. A naïve approach is to advertise the prefix from all subsets of available sites and choose the best-performing subset, but this does not scale well. We demonstrate that by conducting pairwise experiments between sites peering with tier-1 networks, we can predict the catchments that would result if we announce to any subset of the sites. We prove that our method is effective in a simplified model of BGP, consistent with common BGP routing policies, and evaluate it in a real-world testbed. We then present AnyOpt, a system that predicts anycast catchments. Using AnyOpt, a network operator can find a subset of anycast sites that minimizes client latency without using the naïve approach. In an experiment using 15 sites, each peering with one of six transit providers, AnyOpt predicted site catchments of 15,300 clients with 94.7% accuracy and client RTTs with a mean error of 4.6%. AnyOpt identified a subset of 12 sites, announcing to which lowers the mean RTT to clients by 33ms compared to a greedy approach that enables the same number of sites with the lowest average unicast latency.","PeriodicalId":20487,"journal":{"name":"Proceedings of the 2021 ACM SIGCOMM 2021 Conference","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"AnyOpt\",\"authors\":\"Xiao Zhang, Tanmoy Sen, Zheyuan Zhang, Tim April, B. Chandrasekaran, D. Choffnes, Bruce M. Maggs, Haiying Shen, R. Sitaraman, Xiaowei Yang\",\"doi\":\"10.1145/3452296.3472935\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The key to optimizing the performance of an anycast-based system (e.g., the root DNS or a CDN) is choosing the right set of sites to announce the anycast prefix. One challenge here is predicting catchments. A naïve approach is to advertise the prefix from all subsets of available sites and choose the best-performing subset, but this does not scale well. We demonstrate that by conducting pairwise experiments between sites peering with tier-1 networks, we can predict the catchments that would result if we announce to any subset of the sites. We prove that our method is effective in a simplified model of BGP, consistent with common BGP routing policies, and evaluate it in a real-world testbed. We then present AnyOpt, a system that predicts anycast catchments. Using AnyOpt, a network operator can find a subset of anycast sites that minimizes client latency without using the naïve approach. In an experiment using 15 sites, each peering with one of six transit providers, AnyOpt predicted site catchments of 15,300 clients with 94.7% accuracy and client RTTs with a mean error of 4.6%. AnyOpt identified a subset of 12 sites, announcing to which lowers the mean RTT to clients by 33ms compared to a greedy approach that enables the same number of sites with the lowest average unicast latency.\",\"PeriodicalId\":20487,\"journal\":{\"name\":\"Proceedings of the 2021 ACM SIGCOMM 2021 Conference\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2021 ACM SIGCOMM 2021 Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3452296.3472935\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2021 ACM SIGCOMM 2021 Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3452296.3472935","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
AnyOpt
The key to optimizing the performance of an anycast-based system (e.g., the root DNS or a CDN) is choosing the right set of sites to announce the anycast prefix. One challenge here is predicting catchments. A naïve approach is to advertise the prefix from all subsets of available sites and choose the best-performing subset, but this does not scale well. We demonstrate that by conducting pairwise experiments between sites peering with tier-1 networks, we can predict the catchments that would result if we announce to any subset of the sites. We prove that our method is effective in a simplified model of BGP, consistent with common BGP routing policies, and evaluate it in a real-world testbed. We then present AnyOpt, a system that predicts anycast catchments. Using AnyOpt, a network operator can find a subset of anycast sites that minimizes client latency without using the naïve approach. In an experiment using 15 sites, each peering with one of six transit providers, AnyOpt predicted site catchments of 15,300 clients with 94.7% accuracy and client RTTs with a mean error of 4.6%. AnyOpt identified a subset of 12 sites, announcing to which lowers the mean RTT to clients by 33ms compared to a greedy approach that enables the same number of sites with the lowest average unicast latency.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信