迭代对数定律

Santosh Ghimire, Hari Thapa
{"title":"迭代对数定律","authors":"Santosh Ghimire, Hari Thapa","doi":"10.3126/jist.v27i1.45505","DOIUrl":null,"url":null,"abstract":"The article begins first with the history and the development of the law of the iterated logarithm, abbreviated LIL. We then discuss the LIL in the context of independent random variables, dyadic martingales, lacunary trigonometric series, and harmonic functions. Finally, we derive a LIL for a sequence of dyadic martingales.","PeriodicalId":16072,"journal":{"name":"Journal of Hunan Institute of Science and Technology","volume":"304 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Law of the Iterated Logarithm\",\"authors\":\"Santosh Ghimire, Hari Thapa\",\"doi\":\"10.3126/jist.v27i1.45505\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The article begins first with the history and the development of the law of the iterated logarithm, abbreviated LIL. We then discuss the LIL in the context of independent random variables, dyadic martingales, lacunary trigonometric series, and harmonic functions. Finally, we derive a LIL for a sequence of dyadic martingales.\",\"PeriodicalId\":16072,\"journal\":{\"name\":\"Journal of Hunan Institute of Science and Technology\",\"volume\":\"304 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Hunan Institute of Science and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3126/jist.v27i1.45505\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hunan Institute of Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3126/jist.v27i1.45505","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文首先介绍了迭代对数定律(简称LIL)的历史和发展。然后,我们在独立随机变量、并矢鞅、空三角级数和调和函数的背景下讨论了LIL。最后,我们导出了一个并矢鞅序列的LIL。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Law of the Iterated Logarithm
The article begins first with the history and the development of the law of the iterated logarithm, abbreviated LIL. We then discuss the LIL in the context of independent random variables, dyadic martingales, lacunary trigonometric series, and harmonic functions. Finally, we derive a LIL for a sequence of dyadic martingales.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信