高炉炉料分布不均匀的评价

Q3 Materials Science
S. K. Sibagatullin, A. S. Kharchenko, L. D. Devyatchenko
{"title":"高炉炉料分布不均匀的评价","authors":"S. K. Sibagatullin, A. S. Kharchenko, L. D. Devyatchenko","doi":"10.17073/0368-0797-2018-10-766-773","DOIUrl":null,"url":null,"abstract":"In various industries, the uneven distribution of material and  energy resources significantly affects stability of the technological  process and reduces the quality of products. In particular, in the blastfurnace production, the uneven distribution of charge materials and  the temperature of gases significantly affect technical and economic  performance of the furnace. The analysis of bibliographic sources  has shown that for the estimation of unevenness various coefficients  were generally used, taking into account the variability of material and  ener gy resources in the production process, the coefficient of variation  introduced by K. Pierson in 1895 was the most widespread. It was determined the relation between the square of the coefficient of variation of V2 and the value  X2= (n(N-1))/N*V2according to which the random  variable V2 has  X2k a distribution with k degrees of freedom, k  =  N  –  1,  where n  =  n1 + n2 + … + nN, ni is the value of the i-th measurement,  i = 1, N – is the number of measurements. The proposed method  for estimating the unevenness is based on statistics  X2k,  and X2also  introduced by K. Pearson in 1901 and 1904, respectively. The latter  was intended to test the H0-correspondence of the empirical and statistical distribution. The method for determining the circumferential  irregularity in the distribution of materials and gases in a blast furnace  is based on the consistency of X2k and X2 of Pearson statistics, using  the so-called quantile factor q, if in calculations of X2 the valu es   of the ,physical quantities themselves are used, by analogy, not the frequency  of the measured quantities. In this method, X2-statistic after correction  was used to determine the measure of deviation  (p) from the uniform  distribution, i.e. the unevenness coefficientp = p(X2/k), p  є  (0; 1 – α),   X2k =  X2max= qX2 was calculated. In order to reconcile X2 and  X2k statistics with the measurements of the physical quantities (temperature,  pressure) or materials (granular, gaseous), the X2-statistic must be adjusted so that  qX2max≈ X2k(α), X2max с(X21,..., Х2M )where M – is the  number of experiments for which the values   of X2-statics were determined,  X2k(α) – the upper α-quantile of  X2k statistic, q – the quantile multiplier, introduced for the correction of the X2-statistic values,  X2max–  the maximum value of X2-statistic is admissible for determining the  measure of non-uniformity.The method was tested to evaluate the relative non-uniformity of the loaded charge components and the distribution of peripheral temperature at blast furnaces of OJSC “MMK” with  volume of 2014 and 1370 m3. The influence of the sequence of a set of  charge components in the hopper of a bell-less charging device of the  furnace on the coefficient of circumferential unevenness (p) and the  technical and economic parameters of melting was revealed.","PeriodicalId":35527,"journal":{"name":"Izvestiya Vysshikh Uchebnykh Zavedenij. Chernaya Metallurgiya","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2018-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evaluation of uneven distribution of charge materials at blast furnace\",\"authors\":\"S. K. Sibagatullin, A. S. Kharchenko, L. D. Devyatchenko\",\"doi\":\"10.17073/0368-0797-2018-10-766-773\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In various industries, the uneven distribution of material and  energy resources significantly affects stability of the technological  process and reduces the quality of products. In particular, in the blastfurnace production, the uneven distribution of charge materials and  the temperature of gases significantly affect technical and economic  performance of the furnace. The analysis of bibliographic sources  has shown that for the estimation of unevenness various coefficients  were generally used, taking into account the variability of material and  ener gy resources in the production process, the coefficient of variation  introduced by K. Pierson in 1895 was the most widespread. It was determined the relation between the square of the coefficient of variation of V2 and the value  X2= (n(N-1))/N*V2according to which the random  variable V2 has  X2k a distribution with k degrees of freedom, k  =  N  –  1,  where n  =  n1 + n2 + … + nN, ni is the value of the i-th measurement,  i = 1, N – is the number of measurements. The proposed method  for estimating the unevenness is based on statistics  X2k,  and X2also  introduced by K. Pearson in 1901 and 1904, respectively. The latter  was intended to test the H0-correspondence of the empirical and statistical distribution. The method for determining the circumferential  irregularity in the distribution of materials and gases in a blast furnace  is based on the consistency of X2k and X2 of Pearson statistics, using  the so-called quantile factor q, if in calculations of X2 the valu es   of the ,physical quantities themselves are used, by analogy, not the frequency  of the measured quantities. In this method, X2-statistic after correction  was used to determine the measure of deviation  (p) from the uniform  distribution, i.e. the unevenness coefficientp = p(X2/k), p  є  (0; 1 – α),   X2k =  X2max= qX2 was calculated. In order to reconcile X2 and  X2k statistics with the measurements of the physical quantities (temperature,  pressure) or materials (granular, gaseous), the X2-statistic must be adjusted so that  qX2max≈ X2k(α), X2max с(X21,..., Х2M )where M – is the  number of experiments for which the values   of X2-statics were determined,  X2k(α) – the upper α-quantile of  X2k statistic, q – the quantile multiplier, introduced for the correction of the X2-statistic values,  X2max–  the maximum value of X2-statistic is admissible for determining the  measure of non-uniformity.The method was tested to evaluate the relative non-uniformity of the loaded charge components and the distribution of peripheral temperature at blast furnaces of OJSC “MMK” with  volume of 2014 and 1370 m3. The influence of the sequence of a set of  charge components in the hopper of a bell-less charging device of the  furnace on the coefficient of circumferential unevenness (p) and the  technical and economic parameters of melting was revealed.\",\"PeriodicalId\":35527,\"journal\":{\"name\":\"Izvestiya Vysshikh Uchebnykh Zavedenij. Chernaya Metallurgiya\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Izvestiya Vysshikh Uchebnykh Zavedenij. Chernaya Metallurgiya\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17073/0368-0797-2018-10-766-773\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Materials Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Izvestiya Vysshikh Uchebnykh Zavedenij. Chernaya Metallurgiya","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17073/0368-0797-2018-10-766-773","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Materials Science","Score":null,"Total":0}
引用次数: 0

摘要

在各个行业中,材料和能源的不均匀分布严重影响了工艺过程的稳定性,降低了产品的质量。特别是在高炉生产中,炉料分布不均匀和气体温度明显影响炉膛的技术经济性能。对文献资料的分析表明,考虑到生产过程中材料和能源的可变性,对于不均匀度的估计一般采用各种系数,其中以Pierson于1895年引入的变异系数最为广泛。确定了V2变异系数的平方与X2= (n(n -1))/ n *V2的关系,据此,随机变量V2具有k个自由度的X2k分布,k = n -1,其中n = n1 + n2 +…+ nN, ni为第i次测量值,i = 1, n -为测量次数。提出的估计不均匀度的方法是基于统计数据X2k,而x2也分别由K. Pearson在1901年和1904年引入。后者旨在检验经验分布和统计分布的h0对应关系。确定高炉内物料和气体分布的周向不规则性的方法是根据皮尔逊统计的X2k和X2的一致性,使用所谓的分位数因子q,如果在X2的计算中类比地使用物理量本身的值,而不是测量量的频率。该方法利用修正后的X2统计量来确定与均匀分布的偏差度量(p),即计算不均匀系数p = p(X2/k), p _ (0; 1 - α), X2k = X2max= qX2。为了使X2和X2k统计量与物理量(温度,压力)或材料(颗粒,气体)的测量相一致,必须调整X2统计量,使qX2max≈X2k(α), X2max (X21,…, Х2M),其中M -为确定x2统计量值的实验数,X2k(α) - X2k统计量的上α分位数,q -为校正x2统计量值而引入的分位数乘数,X2max -确定非均匀性度量所允许的x2统计量的最大值。采用该方法对2014年和1370 m3的OJSC“MMK”高炉的载药组分相对不均匀性和外围温度分布进行了测试。揭示了炉内无钟装料装置料斗内一组料元排列顺序对圆周不均匀系数p和熔化工艺经济参数的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Evaluation of uneven distribution of charge materials at blast furnace
In various industries, the uneven distribution of material and  energy resources significantly affects stability of the technological  process and reduces the quality of products. In particular, in the blastfurnace production, the uneven distribution of charge materials and  the temperature of gases significantly affect technical and economic  performance of the furnace. The analysis of bibliographic sources  has shown that for the estimation of unevenness various coefficients  were generally used, taking into account the variability of material and  ener gy resources in the production process, the coefficient of variation  introduced by K. Pierson in 1895 was the most widespread. It was determined the relation between the square of the coefficient of variation of V2 and the value  X2= (n(N-1))/N*V2according to which the random  variable V2 has  X2k a distribution with k degrees of freedom, k  =  N  –  1,  where n  =  n1 + n2 + … + nN, ni is the value of the i-th measurement,  i = 1, N – is the number of measurements. The proposed method  for estimating the unevenness is based on statistics  X2k,  and X2also  introduced by K. Pearson in 1901 and 1904, respectively. The latter  was intended to test the H0-correspondence of the empirical and statistical distribution. The method for determining the circumferential  irregularity in the distribution of materials and gases in a blast furnace  is based on the consistency of X2k and X2 of Pearson statistics, using  the so-called quantile factor q, if in calculations of X2 the valu es   of the ,physical quantities themselves are used, by analogy, not the frequency  of the measured quantities. In this method, X2-statistic after correction  was used to determine the measure of deviation  (p) from the uniform  distribution, i.e. the unevenness coefficientp = p(X2/k), p  є  (0; 1 – α),   X2k =  X2max= qX2 was calculated. In order to reconcile X2 and  X2k statistics with the measurements of the physical quantities (temperature,  pressure) or materials (granular, gaseous), the X2-statistic must be adjusted so that  qX2max≈ X2k(α), X2max с(X21,..., Х2M )where M – is the  number of experiments for which the values   of X2-statics were determined,  X2k(α) – the upper α-quantile of  X2k statistic, q – the quantile multiplier, introduced for the correction of the X2-statistic values,  X2max–  the maximum value of X2-statistic is admissible for determining the  measure of non-uniformity.The method was tested to evaluate the relative non-uniformity of the loaded charge components and the distribution of peripheral temperature at blast furnaces of OJSC “MMK” with  volume of 2014 and 1370 m3. The influence of the sequence of a set of  charge components in the hopper of a bell-less charging device of the  furnace on the coefficient of circumferential unevenness (p) and the  technical and economic parameters of melting was revealed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Izvestiya Vysshikh Uchebnykh Zavedenij. Chernaya Metallurgiya
Izvestiya Vysshikh Uchebnykh Zavedenij. Chernaya Metallurgiya Materials Science-Materials Science (miscellaneous)
CiteScore
0.90
自引率
0.00%
发文量
81
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信