WormSpace

Ji-Yong Shin, Jieung Kim, Wolf Honoré, Hernán Vanzetto, S. Radhakrishnan, Mahesh Balakrishnan, Zhong Shao
{"title":"WormSpace","authors":"Ji-Yong Shin, Jieung Kim, Wolf Honoré, Hernán Vanzetto, S. Radhakrishnan, Mahesh Balakrishnan, Zhong Shao","doi":"10.1145/3357223.3362739","DOIUrl":null,"url":null,"abstract":"We propose the Write-Once Register (WOR) as an abstraction for building and verifying distributed systems. A WOR exposes a simple, data-centric API: clients can capture, write, and read it. Applications can use a sequence or a set of WORs to obtain properties such as durability, concurrency control, and failure atomicity. By hiding the logic for distributed coordination underneath a data-centric API, the WOR abstraction enables easy, incremental, and extensible implementation and verification of applications built above it. We present the design, implementation, and verification of a system called WormSpace that provides developers with an address space of WORs, implementing each WOR via a Paxos instance. We describe three applications built over WormSpace: a flexible, efficient Multi-Paxos implementation; a shared log implementation with lower append latency than the state-of-the-art; and a fault-tolerant transaction coordinator that uses an optimal number of round-trips. We show that these applications are simple, easy to verify, and match the performance of unverified monolithic implementations. We use a modular layered verification approach to link the proofs for WormSpace, its applications, and a verified operating system to produce the first verified distributed system stack from the application to the operating system.","PeriodicalId":91949,"journal":{"name":"Proceedings of the ... ACM Symposium on Cloud Computing [electronic resource] : SOCC ... ... SoCC (Conference)","volume":"110 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"WormSpace\",\"authors\":\"Ji-Yong Shin, Jieung Kim, Wolf Honoré, Hernán Vanzetto, S. Radhakrishnan, Mahesh Balakrishnan, Zhong Shao\",\"doi\":\"10.1145/3357223.3362739\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose the Write-Once Register (WOR) as an abstraction for building and verifying distributed systems. A WOR exposes a simple, data-centric API: clients can capture, write, and read it. Applications can use a sequence or a set of WORs to obtain properties such as durability, concurrency control, and failure atomicity. By hiding the logic for distributed coordination underneath a data-centric API, the WOR abstraction enables easy, incremental, and extensible implementation and verification of applications built above it. We present the design, implementation, and verification of a system called WormSpace that provides developers with an address space of WORs, implementing each WOR via a Paxos instance. We describe three applications built over WormSpace: a flexible, efficient Multi-Paxos implementation; a shared log implementation with lower append latency than the state-of-the-art; and a fault-tolerant transaction coordinator that uses an optimal number of round-trips. We show that these applications are simple, easy to verify, and match the performance of unverified monolithic implementations. We use a modular layered verification approach to link the proofs for WormSpace, its applications, and a verified operating system to produce the first verified distributed system stack from the application to the operating system.\",\"PeriodicalId\":91949,\"journal\":{\"name\":\"Proceedings of the ... ACM Symposium on Cloud Computing [electronic resource] : SOCC ... ... SoCC (Conference)\",\"volume\":\"110 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the ... ACM Symposium on Cloud Computing [electronic resource] : SOCC ... ... SoCC (Conference)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3357223.3362739\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ... ACM Symposium on Cloud Computing [electronic resource] : SOCC ... ... SoCC (Conference)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3357223.3362739","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
WormSpace
We propose the Write-Once Register (WOR) as an abstraction for building and verifying distributed systems. A WOR exposes a simple, data-centric API: clients can capture, write, and read it. Applications can use a sequence or a set of WORs to obtain properties such as durability, concurrency control, and failure atomicity. By hiding the logic for distributed coordination underneath a data-centric API, the WOR abstraction enables easy, incremental, and extensible implementation and verification of applications built above it. We present the design, implementation, and verification of a system called WormSpace that provides developers with an address space of WORs, implementing each WOR via a Paxos instance. We describe three applications built over WormSpace: a flexible, efficient Multi-Paxos implementation; a shared log implementation with lower append latency than the state-of-the-art; and a fault-tolerant transaction coordinator that uses an optimal number of round-trips. We show that these applications are simple, easy to verify, and match the performance of unverified monolithic implementations. We use a modular layered verification approach to link the proofs for WormSpace, its applications, and a verified operating system to produce the first verified distributed system stack from the application to the operating system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信