{"title":"具有临界增长保守性乘性噪声的随机多孔介质方程","authors":"N. Dirr, Hubertus Grillmeier, Guenther Grün","doi":"10.3934/dcds.2020388","DOIUrl":null,"url":null,"abstract":"First, we prove existence, nonnegativity, and pathwise uniqueness of martingale solutions to stochastic porous-medium equations driven by conservative multiplicative power-law noise in the Ito-sense. We rely on an energy approach based on finite-element discretization in space, homogeneity arguments and stochastic compactness. Secondly, we use Monte-Carlo simulations to investigate the impact noise has on waiting times and on free-boundary propagation. We find strong evidence that noise on average significantly accelerates propagation and reduces the size of waiting times – changing in particular scaling laws for the size of waiting times.","PeriodicalId":11254,"journal":{"name":"Discrete & Continuous Dynamical Systems - S","volume":"12 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On stochastic porous-medium equations with critical-growth conservative multiplicative noise\",\"authors\":\"N. Dirr, Hubertus Grillmeier, Guenther Grün\",\"doi\":\"10.3934/dcds.2020388\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"First, we prove existence, nonnegativity, and pathwise uniqueness of martingale solutions to stochastic porous-medium equations driven by conservative multiplicative power-law noise in the Ito-sense. We rely on an energy approach based on finite-element discretization in space, homogeneity arguments and stochastic compactness. Secondly, we use Monte-Carlo simulations to investigate the impact noise has on waiting times and on free-boundary propagation. We find strong evidence that noise on average significantly accelerates propagation and reduces the size of waiting times – changing in particular scaling laws for the size of waiting times.\",\"PeriodicalId\":11254,\"journal\":{\"name\":\"Discrete & Continuous Dynamical Systems - S\",\"volume\":\"12 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete & Continuous Dynamical Systems - S\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3934/dcds.2020388\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete & Continuous Dynamical Systems - S","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/dcds.2020388","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
On stochastic porous-medium equations with critical-growth conservative multiplicative noise
First, we prove existence, nonnegativity, and pathwise uniqueness of martingale solutions to stochastic porous-medium equations driven by conservative multiplicative power-law noise in the Ito-sense. We rely on an energy approach based on finite-element discretization in space, homogeneity arguments and stochastic compactness. Secondly, we use Monte-Carlo simulations to investigate the impact noise has on waiting times and on free-boundary propagation. We find strong evidence that noise on average significantly accelerates propagation and reduces the size of waiting times – changing in particular scaling laws for the size of waiting times.