{"title":"populR: R中的人口缩减包","authors":"M. Batsaris, Dimitris Kavroudakis","doi":"10.32614/rj-2023-007","DOIUrl":null,"url":null,"abstract":"Population data provision is usually framed by regulations and restrictions and hence spatially aggregated in predefined enumeration units such as city blocks and census tracts. Many applications require population data at finer scale, and therefore, one may use downscaling methods to transform population counts from coarse spatial units into smaller ones. Although numerous methods for downscaling of population data have been reported in the scientific literature, only a limited number of implementation tools exist. In this study, we introduce populR, an R package that responds to this need. populR provides two downscaling methods, namely Areal Weighted Interpolation and Volume Weighted Interpolation, which are illustrated and compared to alternative implementations in the sf and areal packages using a case study from Mytilini, Greece. The results provide evidence that the vwi approach outperforms the others, and thus, we believe R users may gain significant advantage by using populR for population downscaling.","PeriodicalId":20974,"journal":{"name":"R J.","volume":"3 1","pages":"223-234"},"PeriodicalIF":0.0000,"publicationDate":"2023-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"populR: a Package for Population Downscaling in R\",\"authors\":\"M. Batsaris, Dimitris Kavroudakis\",\"doi\":\"10.32614/rj-2023-007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Population data provision is usually framed by regulations and restrictions and hence spatially aggregated in predefined enumeration units such as city blocks and census tracts. Many applications require population data at finer scale, and therefore, one may use downscaling methods to transform population counts from coarse spatial units into smaller ones. Although numerous methods for downscaling of population data have been reported in the scientific literature, only a limited number of implementation tools exist. In this study, we introduce populR, an R package that responds to this need. populR provides two downscaling methods, namely Areal Weighted Interpolation and Volume Weighted Interpolation, which are illustrated and compared to alternative implementations in the sf and areal packages using a case study from Mytilini, Greece. The results provide evidence that the vwi approach outperforms the others, and thus, we believe R users may gain significant advantage by using populR for population downscaling.\",\"PeriodicalId\":20974,\"journal\":{\"name\":\"R J.\",\"volume\":\"3 1\",\"pages\":\"223-234\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-02-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"R J.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.32614/rj-2023-007\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"R J.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32614/rj-2023-007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Population data provision is usually framed by regulations and restrictions and hence spatially aggregated in predefined enumeration units such as city blocks and census tracts. Many applications require population data at finer scale, and therefore, one may use downscaling methods to transform population counts from coarse spatial units into smaller ones. Although numerous methods for downscaling of population data have been reported in the scientific literature, only a limited number of implementation tools exist. In this study, we introduce populR, an R package that responds to this need. populR provides two downscaling methods, namely Areal Weighted Interpolation and Volume Weighted Interpolation, which are illustrated and compared to alternative implementations in the sf and areal packages using a case study from Mytilini, Greece. The results provide evidence that the vwi approach outperforms the others, and thus, we believe R users may gain significant advantage by using populR for population downscaling.