负载均衡记录联动中的距离计算

Dimitrios Karapiperis, Vassilios S. Verykios
{"title":"负载均衡记录联动中的距离计算","authors":"Dimitrios Karapiperis, Vassilios S. Verykios","doi":"10.1145/2830544.2830546","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a novel method for distributing the distance computations of record pairs generated by a blocking mechanism to the reduce tasks of a Map/Reduce system. The proposed solutions in the literature analyze the blocks and then construct a profile, which contains the number of record pairs in each block. However, this deterministic process, including all its variants, might incur considerable overhead given massive data sets. In contrast, our method utilizes two Map/Reduce jobs where the first job formulates the record pairs while the second job distributes these pairs to the reduce tasks, which perform the distance computations, using repetitive allocation rounds. In each such round, we utilize all the available reduce tasks on a random basis by generating permutations of their indexes. A series of experiments demonstrate an almost-equal distribution of the record pairs, or equivalently of the distance computations, to the reduce tasks, which makes our method a simple, yet efficient, solution for applying a blocking mechanism given massive data sets.","PeriodicalId":90050,"journal":{"name":"SIGKDD explorations : newsletter of the Special Interest Group (SIG) on Knowledge Discovery & Data Mining","volume":"28 1","pages":"1-7"},"PeriodicalIF":0.0000,"publicationDate":"2015-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Load-Balancing the Distance Computations in Record Linkage\",\"authors\":\"Dimitrios Karapiperis, Vassilios S. Verykios\",\"doi\":\"10.1145/2830544.2830546\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a novel method for distributing the distance computations of record pairs generated by a blocking mechanism to the reduce tasks of a Map/Reduce system. The proposed solutions in the literature analyze the blocks and then construct a profile, which contains the number of record pairs in each block. However, this deterministic process, including all its variants, might incur considerable overhead given massive data sets. In contrast, our method utilizes two Map/Reduce jobs where the first job formulates the record pairs while the second job distributes these pairs to the reduce tasks, which perform the distance computations, using repetitive allocation rounds. In each such round, we utilize all the available reduce tasks on a random basis by generating permutations of their indexes. A series of experiments demonstrate an almost-equal distribution of the record pairs, or equivalently of the distance computations, to the reduce tasks, which makes our method a simple, yet efficient, solution for applying a blocking mechanism given massive data sets.\",\"PeriodicalId\":90050,\"journal\":{\"name\":\"SIGKDD explorations : newsletter of the Special Interest Group (SIG) on Knowledge Discovery & Data Mining\",\"volume\":\"28 1\",\"pages\":\"1-7\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-09-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SIGKDD explorations : newsletter of the Special Interest Group (SIG) on Knowledge Discovery & Data Mining\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2830544.2830546\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIGKDD explorations : newsletter of the Special Interest Group (SIG) on Knowledge Discovery & Data Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2830544.2830546","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

摘要

本文提出了一种新的方法,将阻塞机制生成的记录对的距离计算分配到Map/ reduce系统的约简任务中。文献中提出的解决方案分析这些块,然后构建一个包含每个块中记录对数量的轮廓。然而,在大量数据集的情况下,这种确定性过程(包括其所有变体)可能会产生相当大的开销。相比之下,我们的方法使用两个Map/Reduce作业,其中第一个作业制定记录对,而第二个作业将这些记录对分配给Reduce任务,Reduce任务使用重复分配轮执行距离计算。在每个这样的回合中,我们通过生成索引的排列来随机利用所有可用的reduce任务。一系列实验表明,记录对的分布几乎相等,或者相当于距离计算的分布,到减少任务,这使得我们的方法简单,但有效的解决方案,应用阻塞机制给定大量数据集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Load-Balancing the Distance Computations in Record Linkage
In this paper, we propose a novel method for distributing the distance computations of record pairs generated by a blocking mechanism to the reduce tasks of a Map/Reduce system. The proposed solutions in the literature analyze the blocks and then construct a profile, which contains the number of record pairs in each block. However, this deterministic process, including all its variants, might incur considerable overhead given massive data sets. In contrast, our method utilizes two Map/Reduce jobs where the first job formulates the record pairs while the second job distributes these pairs to the reduce tasks, which perform the distance computations, using repetitive allocation rounds. In each such round, we utilize all the available reduce tasks on a random basis by generating permutations of their indexes. A series of experiments demonstrate an almost-equal distribution of the record pairs, or equivalently of the distance computations, to the reduce tasks, which makes our method a simple, yet efficient, solution for applying a blocking mechanism given massive data sets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信