快速探索随机树算法参数的实验研究

Li Meng, Song Qing, Zhao Qin Jun
{"title":"快速探索随机树算法参数的实验研究","authors":"Li Meng, Song Qing, Zhao Qin Jun","doi":"10.1145/3036331.3036358","DOIUrl":null,"url":null,"abstract":"The Rapidly-exploring Random Tree (RRT) is a useful path planning algorithm and has been extensively researched in recent years. Till now parameters setting of the RRT algorithm have not yet been explored and are usually set based on the expert experience. In this paper, lots of simulation experiments are conducted for different parameter values. The influence of the parameters on the performance of the algorithm is analyzed through the statistical experiments data. At last, the suggestion of parameters setting is given.","PeriodicalId":22356,"journal":{"name":"Tenth International Conference on Computer Modeling and Simulation (uksim 2008)","volume":"7 1","pages":"19-23"},"PeriodicalIF":0.0000,"publicationDate":"2017-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Experimental Study of Parameters for Rapidly-exploring Random Tree Algorithm\",\"authors\":\"Li Meng, Song Qing, Zhao Qin Jun\",\"doi\":\"10.1145/3036331.3036358\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Rapidly-exploring Random Tree (RRT) is a useful path planning algorithm and has been extensively researched in recent years. Till now parameters setting of the RRT algorithm have not yet been explored and are usually set based on the expert experience. In this paper, lots of simulation experiments are conducted for different parameter values. The influence of the parameters on the performance of the algorithm is analyzed through the statistical experiments data. At last, the suggestion of parameters setting is given.\",\"PeriodicalId\":22356,\"journal\":{\"name\":\"Tenth International Conference on Computer Modeling and Simulation (uksim 2008)\",\"volume\":\"7 1\",\"pages\":\"19-23\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-01-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tenth International Conference on Computer Modeling and Simulation (uksim 2008)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3036331.3036358\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tenth International Conference on Computer Modeling and Simulation (uksim 2008)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3036331.3036358","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

快速探索随机树(RRT)是一种有用的路径规划算法,近年来得到了广泛的研究。目前对RRT算法的参数设置还没有深入的研究,通常是根据专家经验进行设置。本文针对不同的参数值进行了大量的仿真实验。通过统计实验数据,分析了参数对算法性能的影响。最后给出了参数设置的建议。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Experimental Study of Parameters for Rapidly-exploring Random Tree Algorithm
The Rapidly-exploring Random Tree (RRT) is a useful path planning algorithm and has been extensively researched in recent years. Till now parameters setting of the RRT algorithm have not yet been explored and are usually set based on the expert experience. In this paper, lots of simulation experiments are conducted for different parameter values. The influence of the parameters on the performance of the algorithm is analyzed through the statistical experiments data. At last, the suggestion of parameters setting is given.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信