{"title":"裂缝介质中的地震波模拟","authors":"H. Zhang, Jiaxuan Li, A. Ali","doi":"10.2118/204845-ms","DOIUrl":null,"url":null,"abstract":"\n Fractured reservoirs, including unconventional fields, are important in global energy supply, particularly for carbonate source rocks. Fractures can influence subsurface fluid flow and the stress state of a reservoir. The knowledge about the existence of fractures, their spatial distributions, and orientations can help us optimize well productivity and reservoir performance. Seismic detection of subsurface fractures provides important measurements to remotely image field-scale fractures. In developing such technology, forward modeling of the seismic response from fractures in the reservoir provides an important alternate tool for imaging subsurface fractures. In this paper, we implement a seismic modeling algorithm which can simulate 3D wave propagation in an arbitrary background media with imbedded fractures. During modeling, the fractures are added to the background medium by linear slip theory. Examples demonstrated the impacts of fractures on the wave propagation patterns for both PP and PS waves. We also investigate the amplitude versus offset (AVO) effects caused by fractures in a layer media and lay out potential applications of forward modeling in the inversion of fracture parameters and the estimation of fluid contents.","PeriodicalId":11094,"journal":{"name":"Day 2 Mon, November 29, 2021","volume":"8 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Seismic Wave Simulation in Fractured Media\",\"authors\":\"H. Zhang, Jiaxuan Li, A. Ali\",\"doi\":\"10.2118/204845-ms\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Fractured reservoirs, including unconventional fields, are important in global energy supply, particularly for carbonate source rocks. Fractures can influence subsurface fluid flow and the stress state of a reservoir. The knowledge about the existence of fractures, their spatial distributions, and orientations can help us optimize well productivity and reservoir performance. Seismic detection of subsurface fractures provides important measurements to remotely image field-scale fractures. In developing such technology, forward modeling of the seismic response from fractures in the reservoir provides an important alternate tool for imaging subsurface fractures. In this paper, we implement a seismic modeling algorithm which can simulate 3D wave propagation in an arbitrary background media with imbedded fractures. During modeling, the fractures are added to the background medium by linear slip theory. Examples demonstrated the impacts of fractures on the wave propagation patterns for both PP and PS waves. We also investigate the amplitude versus offset (AVO) effects caused by fractures in a layer media and lay out potential applications of forward modeling in the inversion of fracture parameters and the estimation of fluid contents.\",\"PeriodicalId\":11094,\"journal\":{\"name\":\"Day 2 Mon, November 29, 2021\",\"volume\":\"8 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Day 2 Mon, November 29, 2021\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2118/204845-ms\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 2 Mon, November 29, 2021","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2118/204845-ms","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Fractured reservoirs, including unconventional fields, are important in global energy supply, particularly for carbonate source rocks. Fractures can influence subsurface fluid flow and the stress state of a reservoir. The knowledge about the existence of fractures, their spatial distributions, and orientations can help us optimize well productivity and reservoir performance. Seismic detection of subsurface fractures provides important measurements to remotely image field-scale fractures. In developing such technology, forward modeling of the seismic response from fractures in the reservoir provides an important alternate tool for imaging subsurface fractures. In this paper, we implement a seismic modeling algorithm which can simulate 3D wave propagation in an arbitrary background media with imbedded fractures. During modeling, the fractures are added to the background medium by linear slip theory. Examples demonstrated the impacts of fractures on the wave propagation patterns for both PP and PS waves. We also investigate the amplitude versus offset (AVO) effects caused by fractures in a layer media and lay out potential applications of forward modeling in the inversion of fracture parameters and the estimation of fluid contents.