时间准周期行重力水波在无限深度

R. Feola, Filippo Giuliani
{"title":"时间准周期行重力水波在无限深度","authors":"R. Feola, Filippo Giuliani","doi":"10.4171/RLM/919","DOIUrl":null,"url":null,"abstract":"We present the recent result [8] concerning the existence of quasi-periodic in time traveling waves for the 2d pure gravity water waves system in infinite depth. We provide the first existence result of quasi-periodic water waves solutions bifurcating from a completely resonant elliptic fixed point. The proof is based on a Nash-Moser scheme, Birkhoff normal form methods and pseudo-differential calculus techniques. We deal with the combined problems of small divisors and the fully-nonlinear nature of the equations.","PeriodicalId":8445,"journal":{"name":"arXiv: Analysis of PDEs","volume":"46 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Time quasi-periodic traveling gravity water waves in infinite depth\",\"authors\":\"R. Feola, Filippo Giuliani\",\"doi\":\"10.4171/RLM/919\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present the recent result [8] concerning the existence of quasi-periodic in time traveling waves for the 2d pure gravity water waves system in infinite depth. We provide the first existence result of quasi-periodic water waves solutions bifurcating from a completely resonant elliptic fixed point. The proof is based on a Nash-Moser scheme, Birkhoff normal form methods and pseudo-differential calculus techniques. We deal with the combined problems of small divisors and the fully-nonlinear nature of the equations.\",\"PeriodicalId\":8445,\"journal\":{\"name\":\"arXiv: Analysis of PDEs\",\"volume\":\"46 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Analysis of PDEs\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4171/RLM/919\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Analysis of PDEs","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4171/RLM/919","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文给出了二维纯重力水波系统在无限深度下准周期时间行波存在的最新结果[8]。给出了从完全共振椭圆不动点分岔的拟周期水波解的第一个存在性结果。该证明基于Nash-Moser格式、Birkhoff范式方法和伪微分技术。我们处理小因子的组合问题和方程的完全非线性性质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Time quasi-periodic traveling gravity water waves in infinite depth
We present the recent result [8] concerning the existence of quasi-periodic in time traveling waves for the 2d pure gravity water waves system in infinite depth. We provide the first existence result of quasi-periodic water waves solutions bifurcating from a completely resonant elliptic fixed point. The proof is based on a Nash-Moser scheme, Birkhoff normal form methods and pseudo-differential calculus techniques. We deal with the combined problems of small divisors and the fully-nonlinear nature of the equations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信