{"title":"非线性扩散-平流方程不可压缩极限的收敛速率","authors":"Noemi David, Tomasz Dkebiec, B. Perthame","doi":"10.4171/aihpc/53","DOIUrl":null,"url":null,"abstract":"The incompressible limit of nonlinear diffusion equations of porous medium type has attracted a lot of attention in recent years, due to its ability to link the weak formulation of cell-population models to free boundary problems of Hele-Shaw type. Although vast literature is available on this singular limit, little is known on the convergence rate of the solutions. In this work, we compute the convergence rate in a negative Sobolev norm and, upon interpolating with BV -uniform bounds, we deduce a convergence rate in appropriate Lebesgue spaces. 2010 Mathematics Subject Classification. 35K57; 35K65; 35Q92; 35B45;","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2021-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Convergence rate for the incompressible limit of nonlinear diffusion–advection equations\",\"authors\":\"Noemi David, Tomasz Dkebiec, B. Perthame\",\"doi\":\"10.4171/aihpc/53\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The incompressible limit of nonlinear diffusion equations of porous medium type has attracted a lot of attention in recent years, due to its ability to link the weak formulation of cell-population models to free boundary problems of Hele-Shaw type. Although vast literature is available on this singular limit, little is known on the convergence rate of the solutions. In this work, we compute the convergence rate in a negative Sobolev norm and, upon interpolating with BV -uniform bounds, we deduce a convergence rate in appropriate Lebesgue spaces. 2010 Mathematics Subject Classification. 35K57; 35K65; 35Q92; 35B45;\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2021-08-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4171/aihpc/53\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/aihpc/53","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Convergence rate for the incompressible limit of nonlinear diffusion–advection equations
The incompressible limit of nonlinear diffusion equations of porous medium type has attracted a lot of attention in recent years, due to its ability to link the weak formulation of cell-population models to free boundary problems of Hele-Shaw type. Although vast literature is available on this singular limit, little is known on the convergence rate of the solutions. In this work, we compute the convergence rate in a negative Sobolev norm and, upon interpolating with BV -uniform bounds, we deduce a convergence rate in appropriate Lebesgue spaces. 2010 Mathematics Subject Classification. 35K57; 35K65; 35Q92; 35B45;
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.