基于深度卷积条件随机场的空气质量推断

Zhe Luo, You Yu, Daijun Zhang, Shijie Feng, H. Yu, Yongxin Chang, Wei Shen
{"title":"基于深度卷积条件随机场的空气质量推断","authors":"Zhe Luo, You Yu, Daijun Zhang, Shijie Feng, H. Yu, Yongxin Chang, Wei Shen","doi":"10.1109/ICIVC50857.2020.9177449","DOIUrl":null,"url":null,"abstract":"Conditional Random Field is a discriminative model for time series data. In this paper, we propose an improved CRF and apply it to the task of air quality inference. Different from the classical CRF, our linear chain CRF is a supervised learning based on the deep convolution neural network, which has a strong learning ability and fast processing speed for the engineering big data. Specifically, we model the state feature function and the state transition feature function with deep convolutional neural network. The parameter space can store more feature expressions learned from a large number of data. For the state transition feature function of linear conditional random field, we add the influence of input sequence on this function. Through the modelling and learning both vertex features and edge features from data, we obtain a more powerful and more efficient CRF. Experiments on natural language and air quality data show our CRF can achieve higher accuracy.","PeriodicalId":6806,"journal":{"name":"2020 IEEE 5th International Conference on Image, Vision and Computing (ICIVC)","volume":"9 1","pages":"296-302"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Air Quality Inference with Deep Convolutional Conditional Random Field\",\"authors\":\"Zhe Luo, You Yu, Daijun Zhang, Shijie Feng, H. Yu, Yongxin Chang, Wei Shen\",\"doi\":\"10.1109/ICIVC50857.2020.9177449\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Conditional Random Field is a discriminative model for time series data. In this paper, we propose an improved CRF and apply it to the task of air quality inference. Different from the classical CRF, our linear chain CRF is a supervised learning based on the deep convolution neural network, which has a strong learning ability and fast processing speed for the engineering big data. Specifically, we model the state feature function and the state transition feature function with deep convolutional neural network. The parameter space can store more feature expressions learned from a large number of data. For the state transition feature function of linear conditional random field, we add the influence of input sequence on this function. Through the modelling and learning both vertex features and edge features from data, we obtain a more powerful and more efficient CRF. Experiments on natural language and air quality data show our CRF can achieve higher accuracy.\",\"PeriodicalId\":6806,\"journal\":{\"name\":\"2020 IEEE 5th International Conference on Image, Vision and Computing (ICIVC)\",\"volume\":\"9 1\",\"pages\":\"296-302\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE 5th International Conference on Image, Vision and Computing (ICIVC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIVC50857.2020.9177449\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 5th International Conference on Image, Vision and Computing (ICIVC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIVC50857.2020.9177449","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

条件随机场是时间序列数据的判别模型。在本文中,我们提出了一种改进的CRF,并将其应用于空气质量推断任务。与经典的CRF不同,我们的线性链CRF是基于深度卷积神经网络的监督学习,对于工程大数据具有很强的学习能力和快速的处理速度。具体来说,我们利用深度卷积神经网络对状态特征函数和状态转移特征函数进行建模。参数空间可以存储更多从大量数据中学习到的特征表达式。对于线性条件随机场的状态转移特征函数,我们加入了输入序列对该函数的影响。通过建模并从数据中学习顶点特征和边缘特征,我们得到了一个更强大、更高效的CRF。在自然语言和空气质量数据上的实验表明,该算法可以达到较高的准确率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Air Quality Inference with Deep Convolutional Conditional Random Field
Conditional Random Field is a discriminative model for time series data. In this paper, we propose an improved CRF and apply it to the task of air quality inference. Different from the classical CRF, our linear chain CRF is a supervised learning based on the deep convolution neural network, which has a strong learning ability and fast processing speed for the engineering big data. Specifically, we model the state feature function and the state transition feature function with deep convolutional neural network. The parameter space can store more feature expressions learned from a large number of data. For the state transition feature function of linear conditional random field, we add the influence of input sequence on this function. Through the modelling and learning both vertex features and edge features from data, we obtain a more powerful and more efficient CRF. Experiments on natural language and air quality data show our CRF can achieve higher accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信