{"title":"应用多尺度卷积神经网络诊断脑肿瘤","authors":"Homayoon Yektaei, Hanieh Yektaei, Yasaman Hoseyni","doi":"10.4015/s1016237222500405","DOIUrl":null,"url":null,"abstract":"Nowadays, the number of patients with brain tumors is steadily increasing, diagnosis and isolation of the tumor play an important role in the process of treatment and surgery. Due to the high error of manual segmentation of the tumor, algorithms that perform this operation with less error are of great importance. Convolutional neural networks have made great progress in the field of medical imaging. The use of imaging techniques and pattern recognition in the diagnosis and automatic determination of brain tumors by MRI imaging reduces errors, human error and speeds up detection. The artificial convolutional neural network (CNN) has been widely used in the diagnosis of intelligent cancers and has significantly reduced the error rate. Therefore, in this paper, we present a new method using a combination of convolutional and multi-scale artificial neural network that has significantly increased the accuracy of tumor diagnosis. This study presents a multidisciplinary convolution neural network (MCNN) approach to classifying tumors that can be used as an important part of automated diagnosis systems for accurate cancer diagnosis. Based on the MCNN structure, which presents the MRI image to several deep convolutional neural networks of varying sizes and resolutions, the stage of extracting classical hand-made features is avoided. This approach proposes better classification rates than the classical methods. This study uses a multi-scale convolution technique to achieve a detection accuracy of 95/4%, which shows the efficiency of the proposed method.","PeriodicalId":8862,"journal":{"name":"Biomedical Engineering: Applications, Basis and Communications","volume":"71 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2022-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"DIAGNOSIS OF BRAIN TUMOR USING MULTISCALE CONVOLUTION NEURAL NETWORK\",\"authors\":\"Homayoon Yektaei, Hanieh Yektaei, Yasaman Hoseyni\",\"doi\":\"10.4015/s1016237222500405\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Nowadays, the number of patients with brain tumors is steadily increasing, diagnosis and isolation of the tumor play an important role in the process of treatment and surgery. Due to the high error of manual segmentation of the tumor, algorithms that perform this operation with less error are of great importance. Convolutional neural networks have made great progress in the field of medical imaging. The use of imaging techniques and pattern recognition in the diagnosis and automatic determination of brain tumors by MRI imaging reduces errors, human error and speeds up detection. The artificial convolutional neural network (CNN) has been widely used in the diagnosis of intelligent cancers and has significantly reduced the error rate. Therefore, in this paper, we present a new method using a combination of convolutional and multi-scale artificial neural network that has significantly increased the accuracy of tumor diagnosis. This study presents a multidisciplinary convolution neural network (MCNN) approach to classifying tumors that can be used as an important part of automated diagnosis systems for accurate cancer diagnosis. Based on the MCNN structure, which presents the MRI image to several deep convolutional neural networks of varying sizes and resolutions, the stage of extracting classical hand-made features is avoided. This approach proposes better classification rates than the classical methods. This study uses a multi-scale convolution technique to achieve a detection accuracy of 95/4%, which shows the efficiency of the proposed method.\",\"PeriodicalId\":8862,\"journal\":{\"name\":\"Biomedical Engineering: Applications, Basis and Communications\",\"volume\":\"71 1\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2022-08-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomedical Engineering: Applications, Basis and Communications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4015/s1016237222500405\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical Engineering: Applications, Basis and Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4015/s1016237222500405","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
DIAGNOSIS OF BRAIN TUMOR USING MULTISCALE CONVOLUTION NEURAL NETWORK
Nowadays, the number of patients with brain tumors is steadily increasing, diagnosis and isolation of the tumor play an important role in the process of treatment and surgery. Due to the high error of manual segmentation of the tumor, algorithms that perform this operation with less error are of great importance. Convolutional neural networks have made great progress in the field of medical imaging. The use of imaging techniques and pattern recognition in the diagnosis and automatic determination of brain tumors by MRI imaging reduces errors, human error and speeds up detection. The artificial convolutional neural network (CNN) has been widely used in the diagnosis of intelligent cancers and has significantly reduced the error rate. Therefore, in this paper, we present a new method using a combination of convolutional and multi-scale artificial neural network that has significantly increased the accuracy of tumor diagnosis. This study presents a multidisciplinary convolution neural network (MCNN) approach to classifying tumors that can be used as an important part of automated diagnosis systems for accurate cancer diagnosis. Based on the MCNN structure, which presents the MRI image to several deep convolutional neural networks of varying sizes and resolutions, the stage of extracting classical hand-made features is avoided. This approach proposes better classification rates than the classical methods. This study uses a multi-scale convolution technique to achieve a detection accuracy of 95/4%, which shows the efficiency of the proposed method.
期刊介绍:
Biomedical Engineering: Applications, Basis and Communications is an international, interdisciplinary journal aiming at publishing up-to-date contributions on original clinical and basic research in the biomedical engineering. Research of biomedical engineering has grown tremendously in the past few decades. Meanwhile, several outstanding journals in the field have emerged, with different emphases and objectives. We hope this journal will serve as a new forum for both scientists and clinicians to share their ideas and the results of their studies.
Biomedical Engineering: Applications, Basis and Communications explores all facets of biomedical engineering, with emphasis on both the clinical and scientific aspects of the study. It covers the fields of bioelectronics, biomaterials, biomechanics, bioinformatics, nano-biological sciences and clinical engineering. The journal fulfils this aim by publishing regular research / clinical articles, short communications, technical notes and review papers. Papers from both basic research and clinical investigations will be considered.