应用多尺度卷积神经网络诊断脑肿瘤

IF 0.6 Q4 ENGINEERING, BIOMEDICAL
Homayoon Yektaei, Hanieh Yektaei, Yasaman Hoseyni
{"title":"应用多尺度卷积神经网络诊断脑肿瘤","authors":"Homayoon Yektaei, Hanieh Yektaei, Yasaman Hoseyni","doi":"10.4015/s1016237222500405","DOIUrl":null,"url":null,"abstract":"Nowadays, the number of patients with brain tumors is steadily increasing, diagnosis and isolation of the tumor play an important role in the process of treatment and surgery. Due to the high error of manual segmentation of the tumor, algorithms that perform this operation with less error are of great importance. Convolutional neural networks have made great progress in the field of medical imaging. The use of imaging techniques and pattern recognition in the diagnosis and automatic determination of brain tumors by MRI imaging reduces errors, human error and speeds up detection. The artificial convolutional neural network (CNN) has been widely used in the diagnosis of intelligent cancers and has significantly reduced the error rate. Therefore, in this paper, we present a new method using a combination of convolutional and multi-scale artificial neural network that has significantly increased the accuracy of tumor diagnosis. This study presents a multidisciplinary convolution neural network (MCNN) approach to classifying tumors that can be used as an important part of automated diagnosis systems for accurate cancer diagnosis. Based on the MCNN structure, which presents the MRI image to several deep convolutional neural networks of varying sizes and resolutions, the stage of extracting classical hand-made features is avoided. This approach proposes better classification rates than the classical methods. This study uses a multi-scale convolution technique to achieve a detection accuracy of 95/4%, which shows the efficiency of the proposed method.","PeriodicalId":8862,"journal":{"name":"Biomedical Engineering: Applications, Basis and Communications","volume":"71 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2022-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"DIAGNOSIS OF BRAIN TUMOR USING MULTISCALE CONVOLUTION NEURAL NETWORK\",\"authors\":\"Homayoon Yektaei, Hanieh Yektaei, Yasaman Hoseyni\",\"doi\":\"10.4015/s1016237222500405\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Nowadays, the number of patients with brain tumors is steadily increasing, diagnosis and isolation of the tumor play an important role in the process of treatment and surgery. Due to the high error of manual segmentation of the tumor, algorithms that perform this operation with less error are of great importance. Convolutional neural networks have made great progress in the field of medical imaging. The use of imaging techniques and pattern recognition in the diagnosis and automatic determination of brain tumors by MRI imaging reduces errors, human error and speeds up detection. The artificial convolutional neural network (CNN) has been widely used in the diagnosis of intelligent cancers and has significantly reduced the error rate. Therefore, in this paper, we present a new method using a combination of convolutional and multi-scale artificial neural network that has significantly increased the accuracy of tumor diagnosis. This study presents a multidisciplinary convolution neural network (MCNN) approach to classifying tumors that can be used as an important part of automated diagnosis systems for accurate cancer diagnosis. Based on the MCNN structure, which presents the MRI image to several deep convolutional neural networks of varying sizes and resolutions, the stage of extracting classical hand-made features is avoided. This approach proposes better classification rates than the classical methods. This study uses a multi-scale convolution technique to achieve a detection accuracy of 95/4%, which shows the efficiency of the proposed method.\",\"PeriodicalId\":8862,\"journal\":{\"name\":\"Biomedical Engineering: Applications, Basis and Communications\",\"volume\":\"71 1\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2022-08-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomedical Engineering: Applications, Basis and Communications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4015/s1016237222500405\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical Engineering: Applications, Basis and Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4015/s1016237222500405","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

目前,脑肿瘤患者的数量正在稳步增加,肿瘤的诊断和分离在治疗和手术过程中起着重要作用。由于人工对肿瘤的分割误差较大,因此如何以较小的误差完成这一操作显得尤为重要。卷积神经网络在医学成像领域取得了很大的进展。成像技术和模式识别在诊断和自动确定脑肿瘤的MRI成像减少错误,人为错误和加快检测。人工卷积神经网络(CNN)在智能癌症的诊断中得到了广泛的应用,大大降低了错误率。因此,在本文中,我们提出了一种将卷积和多尺度人工神经网络相结合的新方法,显著提高了肿瘤诊断的准确性。本研究提出了一种多学科卷积神经网络(MCNN)的肿瘤分类方法,可作为自动诊断系统的重要组成部分,用于准确的癌症诊断。基于MCNN结构,将MRI图像呈现给多个不同大小和分辨率的深度卷积神经网络,避免了提取经典手工特征的阶段。该方法比传统方法具有更好的分类率。本研究采用多尺度卷积技术,检测准确率达到95/4%,表明了所提方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
DIAGNOSIS OF BRAIN TUMOR USING MULTISCALE CONVOLUTION NEURAL NETWORK
Nowadays, the number of patients with brain tumors is steadily increasing, diagnosis and isolation of the tumor play an important role in the process of treatment and surgery. Due to the high error of manual segmentation of the tumor, algorithms that perform this operation with less error are of great importance. Convolutional neural networks have made great progress in the field of medical imaging. The use of imaging techniques and pattern recognition in the diagnosis and automatic determination of brain tumors by MRI imaging reduces errors, human error and speeds up detection. The artificial convolutional neural network (CNN) has been widely used in the diagnosis of intelligent cancers and has significantly reduced the error rate. Therefore, in this paper, we present a new method using a combination of convolutional and multi-scale artificial neural network that has significantly increased the accuracy of tumor diagnosis. This study presents a multidisciplinary convolution neural network (MCNN) approach to classifying tumors that can be used as an important part of automated diagnosis systems for accurate cancer diagnosis. Based on the MCNN structure, which presents the MRI image to several deep convolutional neural networks of varying sizes and resolutions, the stage of extracting classical hand-made features is avoided. This approach proposes better classification rates than the classical methods. This study uses a multi-scale convolution technique to achieve a detection accuracy of 95/4%, which shows the efficiency of the proposed method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biomedical Engineering: Applications, Basis and Communications
Biomedical Engineering: Applications, Basis and Communications Biochemistry, Genetics and Molecular Biology-Biophysics
CiteScore
1.50
自引率
11.10%
发文量
36
审稿时长
4 months
期刊介绍: Biomedical Engineering: Applications, Basis and Communications is an international, interdisciplinary journal aiming at publishing up-to-date contributions on original clinical and basic research in the biomedical engineering. Research of biomedical engineering has grown tremendously in the past few decades. Meanwhile, several outstanding journals in the field have emerged, with different emphases and objectives. We hope this journal will serve as a new forum for both scientists and clinicians to share their ideas and the results of their studies. Biomedical Engineering: Applications, Basis and Communications explores all facets of biomedical engineering, with emphasis on both the clinical and scientific aspects of the study. It covers the fields of bioelectronics, biomaterials, biomechanics, bioinformatics, nano-biological sciences and clinical engineering. The journal fulfils this aim by publishing regular research / clinical articles, short communications, technical notes and review papers. Papers from both basic research and clinical investigations will be considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信