基于多普勒的WiFi信号人体活动识别系统

Y. Ge, Shibo Li, Minjian Shentu, Ahmad Taha, Shuyuan Zhu, Jonathan Cooper, M. Imran, Q. Abbasi
{"title":"基于多普勒的WiFi信号人体活动识别系统","authors":"Y. Ge, Shibo Li, Minjian Shentu, Ahmad Taha, Shuyuan Zhu, Jonathan Cooper, M. Imran, Q. Abbasi","doi":"10.1109/SENSORS47087.2021.9639680","DOIUrl":null,"url":null,"abstract":"WiFi-based human activity recognition has drawn a lot of attention in recent years due to the low cost and high popularity of WiFi devices. The wireless monitoring system is able to efficiently detect abnormal activities like falling and body shaking, without privacy invasion. In this paper, we propose a framework using Doppler Frequency Shift-based methodology to extract the features and classify different activities with channel state information collected from WiFi devices. The experimental results demonstrate the reliability of our method for the application of activity recognition.","PeriodicalId":6775,"journal":{"name":"2021 IEEE Sensors","volume":"74 1","pages":"1-4"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"A Doppler-based Human Activity Recognition System using WiFi Signals\",\"authors\":\"Y. Ge, Shibo Li, Minjian Shentu, Ahmad Taha, Shuyuan Zhu, Jonathan Cooper, M. Imran, Q. Abbasi\",\"doi\":\"10.1109/SENSORS47087.2021.9639680\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"WiFi-based human activity recognition has drawn a lot of attention in recent years due to the low cost and high popularity of WiFi devices. The wireless monitoring system is able to efficiently detect abnormal activities like falling and body shaking, without privacy invasion. In this paper, we propose a framework using Doppler Frequency Shift-based methodology to extract the features and classify different activities with channel state information collected from WiFi devices. The experimental results demonstrate the reliability of our method for the application of activity recognition.\",\"PeriodicalId\":6775,\"journal\":{\"name\":\"2021 IEEE Sensors\",\"volume\":\"74 1\",\"pages\":\"1-4\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE Sensors\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SENSORS47087.2021.9639680\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE Sensors","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SENSORS47087.2021.9639680","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

基于WiFi的人体活动识别由于WiFi设备的低成本和高普及,近年来引起了人们的广泛关注。无线监控系统能够有效地检测到跌倒和身体颤抖等异常活动,而不会侵犯隐私。在本文中,我们提出了一个框架,使用基于多普勒频移的方法提取特征并根据从WiFi设备收集的信道状态信息对不同的活动进行分类。实验结果证明了该方法在活动识别应用中的可靠性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Doppler-based Human Activity Recognition System using WiFi Signals
WiFi-based human activity recognition has drawn a lot of attention in recent years due to the low cost and high popularity of WiFi devices. The wireless monitoring system is able to efficiently detect abnormal activities like falling and body shaking, without privacy invasion. In this paper, we propose a framework using Doppler Frequency Shift-based methodology to extract the features and classify different activities with channel state information collected from WiFi devices. The experimental results demonstrate the reliability of our method for the application of activity recognition.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信