一般视频游戏代理的鲁棒性分析

Diego Perez Liebana, Spyridon Samothrakis, J. Togelius, T. Schaul, S. Lucas
{"title":"一般视频游戏代理的鲁棒性分析","authors":"Diego Perez Liebana, Spyridon Samothrakis, J. Togelius, T. Schaul, S. Lucas","doi":"10.1109/CIG.2016.7860430","DOIUrl":null,"url":null,"abstract":"This paper presents a study on the robustness and variability of performance of general video game-playing agents. Agents analyzed includes those that won the different legs of the 2014 and 2015 General Video Game AI Competitions, and two sample agents distributed with its framework. Initially, these agents are run in four games and ranked according to the rules of the competition. Then, different modifications to the reward signal of the games are proposed and noise is introduced in either the actions executed by the controller, their forward model, or both. Results show that it is possible to produce a significant change in the rankings by introducing the modifications proposed here. This is an important result because it enables the set of human-authored games to be automatically expanded by adding parameter-varied versions that add information and insight into the relative strengths of the agents under test. Results also show that some controllers perform well under almost all conditions, a testament to the robustness of the GVGAI benchmark.","PeriodicalId":6594,"journal":{"name":"2016 IEEE Conference on Computational Intelligence and Games (CIG)","volume":"97 1","pages":"1-8"},"PeriodicalIF":0.0000,"publicationDate":"2016-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":"{\"title\":\"Analyzing the robustness of general video game playing agents\",\"authors\":\"Diego Perez Liebana, Spyridon Samothrakis, J. Togelius, T. Schaul, S. Lucas\",\"doi\":\"10.1109/CIG.2016.7860430\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a study on the robustness and variability of performance of general video game-playing agents. Agents analyzed includes those that won the different legs of the 2014 and 2015 General Video Game AI Competitions, and two sample agents distributed with its framework. Initially, these agents are run in four games and ranked according to the rules of the competition. Then, different modifications to the reward signal of the games are proposed and noise is introduced in either the actions executed by the controller, their forward model, or both. Results show that it is possible to produce a significant change in the rankings by introducing the modifications proposed here. This is an important result because it enables the set of human-authored games to be automatically expanded by adding parameter-varied versions that add information and insight into the relative strengths of the agents under test. Results also show that some controllers perform well under almost all conditions, a testament to the robustness of the GVGAI benchmark.\",\"PeriodicalId\":6594,\"journal\":{\"name\":\"2016 IEEE Conference on Computational Intelligence and Games (CIG)\",\"volume\":\"97 1\",\"pages\":\"1-8\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE Conference on Computational Intelligence and Games (CIG)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CIG.2016.7860430\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Conference on Computational Intelligence and Games (CIG)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIG.2016.7860430","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

摘要

本文研究了一般视频游戏代理的鲁棒性和可变性。分析的代理包括2014年和2015年通用电子游戏人工智能竞赛中不同回合的赢家,以及与其框架一起分发的两个样本代理。最初,这些代理在四场比赛中运行,并根据比赛规则进行排名。然后,对游戏的奖励信号进行不同的修改,并在控制器执行的动作、它们的前向模型或两者中引入噪声。结果表明,通过引入本文提出的修改,有可能使排名发生重大变化。这是一个重要的结果,因为它可以通过添加参数变化版本来自动扩展人类创作的游戏集,这些版本可以添加信息并洞察被测代理的相对优势。结果还表明,一些控制器在几乎所有条件下都表现良好,证明了GVGAI基准的鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Analyzing the robustness of general video game playing agents
This paper presents a study on the robustness and variability of performance of general video game-playing agents. Agents analyzed includes those that won the different legs of the 2014 and 2015 General Video Game AI Competitions, and two sample agents distributed with its framework. Initially, these agents are run in four games and ranked according to the rules of the competition. Then, different modifications to the reward signal of the games are proposed and noise is introduced in either the actions executed by the controller, their forward model, or both. Results show that it is possible to produce a significant change in the rankings by introducing the modifications proposed here. This is an important result because it enables the set of human-authored games to be automatically expanded by adding parameter-varied versions that add information and insight into the relative strengths of the agents under test. Results also show that some controllers perform well under almost all conditions, a testament to the robustness of the GVGAI benchmark.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信