{"title":"近临界密度等离子体相对强辐射的多普勒移位产生同步x射线和中红外脉冲","authors":"N. A. Mikheytsev, A. Korzhimanov","doi":"10.1063/5.0116660","DOIUrl":null,"url":null,"abstract":"It is shown that when relativistically intense ultrashort laser pulses are reflected from the boundary of a plasma with a near-critical density, the Doppler frequency shift leads to generation of intense radiation in both the high-frequency (up to the x-ray) and low-frequency (mid-infrared) ranges. The efficiency of energy conversion into the wavelength range above 3 µm can reach several percent, which makes it possible to obtain relativistically intense pulses in the mid-infrared range. These pulses are synchronized with high harmonics in the ultraviolet and x-ray ranges, which opens up opportunities for high-precision pump–probe measurements, in particular, laser-induced electron diffraction and transient absorption spectroscopy.","PeriodicalId":54221,"journal":{"name":"Matter and Radiation at Extremes","volume":"8 1","pages":""},"PeriodicalIF":4.7000,"publicationDate":"2022-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Generation of synchronized x-rays and mid-infrared pulses by Doppler-shifting of relativistically intense radiation from near-critical-density plasmas\",\"authors\":\"N. A. Mikheytsev, A. Korzhimanov\",\"doi\":\"10.1063/5.0116660\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"It is shown that when relativistically intense ultrashort laser pulses are reflected from the boundary of a plasma with a near-critical density, the Doppler frequency shift leads to generation of intense radiation in both the high-frequency (up to the x-ray) and low-frequency (mid-infrared) ranges. The efficiency of energy conversion into the wavelength range above 3 µm can reach several percent, which makes it possible to obtain relativistically intense pulses in the mid-infrared range. These pulses are synchronized with high harmonics in the ultraviolet and x-ray ranges, which opens up opportunities for high-precision pump–probe measurements, in particular, laser-induced electron diffraction and transient absorption spectroscopy.\",\"PeriodicalId\":54221,\"journal\":{\"name\":\"Matter and Radiation at Extremes\",\"volume\":\"8 1\",\"pages\":\"\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2022-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Matter and Radiation at Extremes\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0116660\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Matter and Radiation at Extremes","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1063/5.0116660","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
Generation of synchronized x-rays and mid-infrared pulses by Doppler-shifting of relativistically intense radiation from near-critical-density plasmas
It is shown that when relativistically intense ultrashort laser pulses are reflected from the boundary of a plasma with a near-critical density, the Doppler frequency shift leads to generation of intense radiation in both the high-frequency (up to the x-ray) and low-frequency (mid-infrared) ranges. The efficiency of energy conversion into the wavelength range above 3 µm can reach several percent, which makes it possible to obtain relativistically intense pulses in the mid-infrared range. These pulses are synchronized with high harmonics in the ultraviolet and x-ray ranges, which opens up opportunities for high-precision pump–probe measurements, in particular, laser-induced electron diffraction and transient absorption spectroscopy.
期刊介绍:
Matter and Radiation at Extremes (MRE), is committed to the publication of original and impactful research and review papers that address extreme states of matter and radiation, and the associated science and technology that are employed to produce and diagnose these conditions in the laboratory. Drivers, targets and diagnostics are included along with related numerical simulation and computational methods. It aims to provide a peer-reviewed platform for the international physics community and promote worldwide dissemination of the latest and impactful research in related fields.