可数无原子布尔代数的泛函约化

Bertalan Bodor, Kende Kalina, Csaba A. Szabó
{"title":"可数无原子布尔代数的泛函约化","authors":"Bertalan Bodor, Kende Kalina, Csaba A. Szabó","doi":"10.1142/s0218196723500078","DOIUrl":null,"url":null,"abstract":"For an algebra [Formula: see text] the algebra [Formula: see text] is called a functional reduct if each [Formula: see text] is a term function of [Formula: see text]. We classify the functional reducts of the countable atomless Boolean algebra up to first-order interdefinability. That is, we consider two functional reducts the “same” if their group of automorphisms is the same. We show that there are 13 such reducts and describe their structures and group of automorphisms.","PeriodicalId":13615,"journal":{"name":"Int. J. Algebra Comput.","volume":"15 1","pages":"87-103"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Functional reducts of the countable atomless Boolean algebra\",\"authors\":\"Bertalan Bodor, Kende Kalina, Csaba A. Szabó\",\"doi\":\"10.1142/s0218196723500078\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For an algebra [Formula: see text] the algebra [Formula: see text] is called a functional reduct if each [Formula: see text] is a term function of [Formula: see text]. We classify the functional reducts of the countable atomless Boolean algebra up to first-order interdefinability. That is, we consider two functional reducts the “same” if their group of automorphisms is the same. We show that there are 13 such reducts and describe their structures and group of automorphisms.\",\"PeriodicalId\":13615,\"journal\":{\"name\":\"Int. J. Algebra Comput.\",\"volume\":\"15 1\",\"pages\":\"87-103\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Algebra Comput.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/s0218196723500078\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Algebra Comput.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0218196723500078","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

对于一个代数[公式:见文],如果每个[公式:见文]是[公式:见文]的项函数,则该代数[公式:见文]被称为函数约简。对可数无原子布尔代数的一阶可互定义的泛函约进行了分类。也就是说,我们认为两个泛函约简是“相同的”,如果它们的自同构群是相同的。我们证明了有13个这样的约简,并描述了它们的结构和自同构群。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Functional reducts of the countable atomless Boolean algebra
For an algebra [Formula: see text] the algebra [Formula: see text] is called a functional reduct if each [Formula: see text] is a term function of [Formula: see text]. We classify the functional reducts of the countable atomless Boolean algebra up to first-order interdefinability. That is, we consider two functional reducts the “same” if their group of automorphisms is the same. We show that there are 13 such reducts and describe their structures and group of automorphisms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信