{"title":"水泥掺量和含水率对土工格栅固化废泥浆拉出界面性能的影响","authors":"Jian Zhang, Xirui Wang, Jie Shen","doi":"10.17222/mit.2023.848","DOIUrl":null,"url":null,"abstract":"In engineering, waste mud is often used as a filling material after a solidification treatment. Geogrids, being excellent geotechnical engineering materials, are often used for soil reinforcement. In this work, a pullout test that considered the influence of different waste-mud moisture contents and cement contents was conducted to investigate the interface characteristics of geogrid-solidified waste-mud-reinforced soil. Then, the relationship between the pullout force and displacement, and the variations in the cohesion, friction angle and quasifriction coefficient were analysed. The results showed that the pullout force-displacement curve represented a strain-softening pattern. With the increasing moisture content, the peak pullout force, interfacial cohesion and quasifriction coefficient decreased gradually, but the internal friction angle did not change substantially. With the increasing cement content, the peak pullout force, interfacial cohesion, internal friction angle and quasifriction coefficient increased gradually. The peak pullout force was linearly correlated with the change in the moisture content and logarithmically correlated with the change in the cement content. Compared with the moisture content, the reinforcement-soil interface was more affected by the cement content. This study provides guidelines for the mixture design of reinforced solidified waste mud.","PeriodicalId":18258,"journal":{"name":"Materiali in tehnologije","volume":"10 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2023-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"INFLUENCE OF CEMENT CONTENT AND MOISTURE CONTENT ON THE PULLOUT-INTERFACE PROPERTIES OF GEOGRID-SOLIDIFIED WASTE MUD\",\"authors\":\"Jian Zhang, Xirui Wang, Jie Shen\",\"doi\":\"10.17222/mit.2023.848\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In engineering, waste mud is often used as a filling material after a solidification treatment. Geogrids, being excellent geotechnical engineering materials, are often used for soil reinforcement. In this work, a pullout test that considered the influence of different waste-mud moisture contents and cement contents was conducted to investigate the interface characteristics of geogrid-solidified waste-mud-reinforced soil. Then, the relationship between the pullout force and displacement, and the variations in the cohesion, friction angle and quasifriction coefficient were analysed. The results showed that the pullout force-displacement curve represented a strain-softening pattern. With the increasing moisture content, the peak pullout force, interfacial cohesion and quasifriction coefficient decreased gradually, but the internal friction angle did not change substantially. With the increasing cement content, the peak pullout force, interfacial cohesion, internal friction angle and quasifriction coefficient increased gradually. The peak pullout force was linearly correlated with the change in the moisture content and logarithmically correlated with the change in the cement content. Compared with the moisture content, the reinforcement-soil interface was more affected by the cement content. This study provides guidelines for the mixture design of reinforced solidified waste mud.\",\"PeriodicalId\":18258,\"journal\":{\"name\":\"Materiali in tehnologije\",\"volume\":\"10 1\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-07-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materiali in tehnologije\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.17222/mit.2023.848\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materiali in tehnologije","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.17222/mit.2023.848","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
INFLUENCE OF CEMENT CONTENT AND MOISTURE CONTENT ON THE PULLOUT-INTERFACE PROPERTIES OF GEOGRID-SOLIDIFIED WASTE MUD
In engineering, waste mud is often used as a filling material after a solidification treatment. Geogrids, being excellent geotechnical engineering materials, are often used for soil reinforcement. In this work, a pullout test that considered the influence of different waste-mud moisture contents and cement contents was conducted to investigate the interface characteristics of geogrid-solidified waste-mud-reinforced soil. Then, the relationship between the pullout force and displacement, and the variations in the cohesion, friction angle and quasifriction coefficient were analysed. The results showed that the pullout force-displacement curve represented a strain-softening pattern. With the increasing moisture content, the peak pullout force, interfacial cohesion and quasifriction coefficient decreased gradually, but the internal friction angle did not change substantially. With the increasing cement content, the peak pullout force, interfacial cohesion, internal friction angle and quasifriction coefficient increased gradually. The peak pullout force was linearly correlated with the change in the moisture content and logarithmically correlated with the change in the cement content. Compared with the moisture content, the reinforcement-soil interface was more affected by the cement content. This study provides guidelines for the mixture design of reinforced solidified waste mud.
期刊介绍:
The journal MATERIALI IN TEHNOLOGIJE/MATERIALS AND TECHNOLOGY is a scientific journal, devoted to original papers and review scientific papers concerned with the areas of fundamental and applied science and technology. Topics of particular interest include metallic materials, inorganic materials, polymers, vacuum technique and lately nanomaterials.