Edgar C. Hornus , Martín A. Rodríguez , Ricardo M. Carranza , C. Mabel Giordano , Raúl B. Rebak
{"title":"环境变量对核库Ni-Cr-Mo合金缝隙腐蚀敏感性的影响","authors":"Edgar C. Hornus , Martín A. Rodríguez , Ricardo M. Carranza , C. Mabel Giordano , Raúl B. Rebak","doi":"10.1016/j.mspro.2015.04.043","DOIUrl":null,"url":null,"abstract":"<div><p>The crevice corrosion repassivation potential was determined by the Potentiodynamic–Galvanostatic-Potentiodynamic (PD–GS–PD) method. Alloys 625, C–22, C–22HS and HYBRID–BC1 were used. Specimens contained 24 artificially creviced spots formed by a ceramic washer (crevice former) wrapped with a PTFE tape. Crevice corrosion tests were performed in 0.1 mol/L and 1 mol/L NaCl solutions at temperatures between 20 and 90<!--> <!-->°C, and CaCl<sub>2</sub> 5 mol/L solution at temperatures between 20 and 117<!--> <!-->°C. The crevice corrosion resistance of the alloys increased in the following order: 625 < C–22 < C–22HS < HYBRID–BC1. The repassivation potential (E<sub>CO</sub>) showed the following relationship with temperature (T) and chloride concentration ([Cl<sup>−</sup>]) E<sub>CO</sub> = (a + b T) log [Cl<sup>−</sup>] + c T + d; where a, b, c and d are constants. At temperatures above 90<!--> <!-->°C, E<sub>CO</sub> for alloy 625 stabilized at a minimum value of –0.26 V<sub>SCE</sub>.</p></div>","PeriodicalId":101041,"journal":{"name":"Procedia Materials Science","volume":"8 ","pages":"Pages 11-20"},"PeriodicalIF":0.0000,"publicationDate":"2015-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.mspro.2015.04.043","citationCount":"4","resultStr":"{\"title\":\"Effect of Environmental Variables on Crevice Corrosion Susceptibility of Ni–Cr–Mo Alloys for Nuclear Repositories\",\"authors\":\"Edgar C. Hornus , Martín A. Rodríguez , Ricardo M. Carranza , C. Mabel Giordano , Raúl B. Rebak\",\"doi\":\"10.1016/j.mspro.2015.04.043\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The crevice corrosion repassivation potential was determined by the Potentiodynamic–Galvanostatic-Potentiodynamic (PD–GS–PD) method. Alloys 625, C–22, C–22HS and HYBRID–BC1 were used. Specimens contained 24 artificially creviced spots formed by a ceramic washer (crevice former) wrapped with a PTFE tape. Crevice corrosion tests were performed in 0.1 mol/L and 1 mol/L NaCl solutions at temperatures between 20 and 90<!--> <!-->°C, and CaCl<sub>2</sub> 5 mol/L solution at temperatures between 20 and 117<!--> <!-->°C. The crevice corrosion resistance of the alloys increased in the following order: 625 < C–22 < C–22HS < HYBRID–BC1. The repassivation potential (E<sub>CO</sub>) showed the following relationship with temperature (T) and chloride concentration ([Cl<sup>−</sup>]) E<sub>CO</sub> = (a + b T) log [Cl<sup>−</sup>] + c T + d; where a, b, c and d are constants. At temperatures above 90<!--> <!-->°C, E<sub>CO</sub> for alloy 625 stabilized at a minimum value of –0.26 V<sub>SCE</sub>.</p></div>\",\"PeriodicalId\":101041,\"journal\":{\"name\":\"Procedia Materials Science\",\"volume\":\"8 \",\"pages\":\"Pages 11-20\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.mspro.2015.04.043\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Procedia Materials Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2211812815000449\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Procedia Materials Science","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2211812815000449","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
摘要
采用动电位-恒流-动电位(PD-GS-PD)法测定缝隙腐蚀再钝化电位。采用625、C-22、C-22HS和HYBRID-BC1合金。样品包含24个人工裂缝点,这些裂缝点是由用聚四氟乙烯胶带包裹的陶瓷垫圈(裂缝形成器)形成的。在温度为20 ~ 90℃的0.1 mol/L和1 mol/L NaCl溶液和温度为20 ~ 117℃的5 mol/L CaCl2溶液中进行缝隙腐蚀试验。各合金的抗缝隙腐蚀性能提高的顺序为:625 <C-22 & lt;C-22HS & lt;HYBRID-BC1。再钝化电位(ECO)与温度(T)和氯离子浓度([Cl−])有如下关系:ECO = (a + b T) log [Cl−]+ c T + d;其中a b c d是常数。在高于90°C的温度下,625合金的ECO稳定在最小值-0.26 VSCE。
Effect of Environmental Variables on Crevice Corrosion Susceptibility of Ni–Cr–Mo Alloys for Nuclear Repositories
The crevice corrosion repassivation potential was determined by the Potentiodynamic–Galvanostatic-Potentiodynamic (PD–GS–PD) method. Alloys 625, C–22, C–22HS and HYBRID–BC1 were used. Specimens contained 24 artificially creviced spots formed by a ceramic washer (crevice former) wrapped with a PTFE tape. Crevice corrosion tests were performed in 0.1 mol/L and 1 mol/L NaCl solutions at temperatures between 20 and 90 °C, and CaCl2 5 mol/L solution at temperatures between 20 and 117 °C. The crevice corrosion resistance of the alloys increased in the following order: 625 < C–22 < C–22HS < HYBRID–BC1. The repassivation potential (ECO) showed the following relationship with temperature (T) and chloride concentration ([Cl−]) ECO = (a + b T) log [Cl−] + c T + d; where a, b, c and d are constants. At temperatures above 90 °C, ECO for alloy 625 stabilized at a minimum value of –0.26 VSCE.