Chun-Yang Li, Jason C Crack, Simone Newton-Payne, Andrew R J Murphy, Xiu-Lan Chen, Benjamin J Pinchbeck, Shun Zhou, Beth T Williams, Ming Peng, Xiao-Hua Zhang, Yin Chen, Nick E Le Brun, Jonathan D Todd, Yu-Zhong Zhang
{"title":"海洋二甲基硫代丙酸关键合成酶 DsyB/DSYB 的机理研究。","authors":"Chun-Yang Li, Jason C Crack, Simone Newton-Payne, Andrew R J Murphy, Xiu-Lan Chen, Benjamin J Pinchbeck, Shun Zhou, Beth T Williams, Ming Peng, Xiao-Hua Zhang, Yin Chen, Nick E Le Brun, Jonathan D Todd, Yu-Zhong Zhang","doi":"10.1002/mlf2.12030","DOIUrl":null,"url":null,"abstract":"<p><p>Marine algae and bacteria produce approximately eight billion tonnes of the organosulfur molecule dimethylsulfoniopropionate (DMSP) in Earth's surface oceans annually. DMSP is an antistress compound and, once released into the environment, a major nutrient, signaling molecule, and source of climate-active gases. The methionine transamination pathway for DMSP synthesis is used by most known DMSP-producing algae and bacteria. The <i>S</i>-directed <i>S</i>-adenosylmethionine (SAM)-dependent 4-methylthio-2-hydroxybutyrate (MTHB) <i>S</i>-methyltransferase, encoded by the <i>dsyB/DSYB</i> gene, is the key enzyme of this pathway, generating <i>S</i>-adenosylhomocysteine (SAH) and 4-dimethylsulfonio-2-hydroxybutyrate (DMSHB). <i>DsyB</i>/<i>DSYB</i>, present in most haptophyte and dinoflagellate algae with the highest known intracellular DMSP concentrations, is shown to be far more abundant and transcribed in marine environments than any other known <i>S</i>-methyltransferase gene in DMSP synthesis pathways. Furthermore, we demonstrate <i>in vitro</i> activity of the bacterial DsyB enzyme from <i>Nisaea denitrificans</i> and provide its crystal structure in complex with SAM and SAH-MTHB, which together provide the first important mechanistic insights into a DMSP synthesis enzyme. Structural and mutational analyses imply that DsyB adopts a proximity and desolvation mechanism for the methyl transfer reaction. Sequence analysis suggests that this mechanism may be common to all bacterial DsyB enzymes and also, importantly, eukaryotic DSYB enzymes from e.g., algae that are the major DMSP producers in Earth's surface oceans.</p>","PeriodicalId":19961,"journal":{"name":"Pastoral Psychology","volume":"56 1","pages":"114-130"},"PeriodicalIF":0.8000,"publicationDate":"2022-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10989797/pdf/","citationCount":"0","resultStr":"{\"title\":\"Mechanistic insights into the key marine dimethylsulfoniopropionate synthesis enzyme DsyB/DSYB.\",\"authors\":\"Chun-Yang Li, Jason C Crack, Simone Newton-Payne, Andrew R J Murphy, Xiu-Lan Chen, Benjamin J Pinchbeck, Shun Zhou, Beth T Williams, Ming Peng, Xiao-Hua Zhang, Yin Chen, Nick E Le Brun, Jonathan D Todd, Yu-Zhong Zhang\",\"doi\":\"10.1002/mlf2.12030\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Marine algae and bacteria produce approximately eight billion tonnes of the organosulfur molecule dimethylsulfoniopropionate (DMSP) in Earth's surface oceans annually. DMSP is an antistress compound and, once released into the environment, a major nutrient, signaling molecule, and source of climate-active gases. The methionine transamination pathway for DMSP synthesis is used by most known DMSP-producing algae and bacteria. The <i>S</i>-directed <i>S</i>-adenosylmethionine (SAM)-dependent 4-methylthio-2-hydroxybutyrate (MTHB) <i>S</i>-methyltransferase, encoded by the <i>dsyB/DSYB</i> gene, is the key enzyme of this pathway, generating <i>S</i>-adenosylhomocysteine (SAH) and 4-dimethylsulfonio-2-hydroxybutyrate (DMSHB). <i>DsyB</i>/<i>DSYB</i>, present in most haptophyte and dinoflagellate algae with the highest known intracellular DMSP concentrations, is shown to be far more abundant and transcribed in marine environments than any other known <i>S</i>-methyltransferase gene in DMSP synthesis pathways. Furthermore, we demonstrate <i>in vitro</i> activity of the bacterial DsyB enzyme from <i>Nisaea denitrificans</i> and provide its crystal structure in complex with SAM and SAH-MTHB, which together provide the first important mechanistic insights into a DMSP synthesis enzyme. Structural and mutational analyses imply that DsyB adopts a proximity and desolvation mechanism for the methyl transfer reaction. Sequence analysis suggests that this mechanism may be common to all bacterial DsyB enzymes and also, importantly, eukaryotic DSYB enzymes from e.g., algae that are the major DMSP producers in Earth's surface oceans.</p>\",\"PeriodicalId\":19961,\"journal\":{\"name\":\"Pastoral Psychology\",\"volume\":\"56 1\",\"pages\":\"114-130\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2022-06-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10989797/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pastoral Psychology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/mlf2.12030\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2022/6/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q3\",\"JCRName\":\"PSYCHOLOGY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pastoral Psychology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/mlf2.12030","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/6/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"PSYCHOLOGY, MULTIDISCIPLINARY","Score":null,"Total":0}
Mechanistic insights into the key marine dimethylsulfoniopropionate synthesis enzyme DsyB/DSYB.
Marine algae and bacteria produce approximately eight billion tonnes of the organosulfur molecule dimethylsulfoniopropionate (DMSP) in Earth's surface oceans annually. DMSP is an antistress compound and, once released into the environment, a major nutrient, signaling molecule, and source of climate-active gases. The methionine transamination pathway for DMSP synthesis is used by most known DMSP-producing algae and bacteria. The S-directed S-adenosylmethionine (SAM)-dependent 4-methylthio-2-hydroxybutyrate (MTHB) S-methyltransferase, encoded by the dsyB/DSYB gene, is the key enzyme of this pathway, generating S-adenosylhomocysteine (SAH) and 4-dimethylsulfonio-2-hydroxybutyrate (DMSHB). DsyB/DSYB, present in most haptophyte and dinoflagellate algae with the highest known intracellular DMSP concentrations, is shown to be far more abundant and transcribed in marine environments than any other known S-methyltransferase gene in DMSP synthesis pathways. Furthermore, we demonstrate in vitro activity of the bacterial DsyB enzyme from Nisaea denitrificans and provide its crystal structure in complex with SAM and SAH-MTHB, which together provide the first important mechanistic insights into a DMSP synthesis enzyme. Structural and mutational analyses imply that DsyB adopts a proximity and desolvation mechanism for the methyl transfer reaction. Sequence analysis suggests that this mechanism may be common to all bacterial DsyB enzymes and also, importantly, eukaryotic DSYB enzymes from e.g., algae that are the major DMSP producers in Earth's surface oceans.
期刊介绍:
Pastoral Psychology, founded in 1950, is one of the most well-established and respected journals in the field of psychology and religion/spirituality. Pastoral Psychology is an international forum that publishes scholarly, peer-reviewed original articles that address varied aspects of religion and spirituality from physical, human science, and interfaith perspectives.
Historically, the word “pastoral” has referred to the care of individuals, families, and communities. Today, we additionally consider “pastoral” in terms of lived experience as it relates to embodiment, the social-political, economic, spiritual, and environmental dimensions of life.
All theoretical perspectives are welcome, as Pastoral Psychology regularly publishes articles from a variety of schools of thought, including, but not limited to, psychoanalytic and other dynamic psychologies, cognitive psychologies, experimental and empirical psychologies, humanistic psychology, transpersonal psychology, and cultural psychology. Insights from existential perspectives, intersectional theories, philosophical and theological theories, gender and queer studies, sociology, anthropology, public mental health, and cultural and empirical studies are welcome. Theoretical contributions that have direct or indirect relevance for practice, broadly construed, are especially desirable, as our intended audience includes not only academics and scholars in religion and science, but also religious and spiritual leaders, as well as caregivers, chaplains, social workers, counselors/therapists, clinical psychologists, psychiatrists, and persons interested in matters of religion/spirituality and psychology.
Pastoral Psychology welcomes scholarship and reflection from all religious and spiritual traditions. In addition to scholarly research papers, the journal welcomes thoughtful essays on a wide range of issues and various genres of writing, including book reviews and film reviews. The community of scholars represented in its pages has demonstrated that the life challenges the journal seeks to address are universally shared, yet also reflect individual social, cultural, and religious locations. The journal, therefore, welcomes submissions from scholars from around the world.