用蒙特卡罗树搜索从网络文本中提取知识

Guiliang Liu, Xu Li, Jiakang Wang, Mingming Sun, P. Li
{"title":"用蒙特卡罗树搜索从网络文本中提取知识","authors":"Guiliang Liu, Xu Li, Jiakang Wang, Mingming Sun, P. Li","doi":"10.1145/3366423.3380010","DOIUrl":null,"url":null,"abstract":"To extract knowledge from general web text, it requires to build a domain-independent extractor that scales to the entire web corpus. This task is known as Open Information Extraction (OIE). This paper proposes to apply Monte-Carlo Tree Search (MCTS) to accomplish OIE. To achieve this goal, we define a Markov Decision Process for OIE and build a simulator to learn the reward signals, which provides a complete reinforcement learning framework for MCTS. Using this framework, MCTS explores candidate words (and symbols) under the guidance of a pre-trained Sequence-to-Sequence (Seq2Seq) predictor and generates abundant exploration samples during training. We apply the exploration samples to update the reward simulator and the predictor, based on which we implement another MCTS to search the optimal predictions during inference. Empirical evaluation demonstrates that the MCTS inference substantially improves the accuracy of prediction (more than 10%) and achieves a leading performance over other state-of-the-art comparison models.","PeriodicalId":20754,"journal":{"name":"Proceedings of The Web Conference 2020","volume":"27 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"24","resultStr":"{\"title\":\"Extracting Knowledge from Web Text with Monte Carlo Tree Search\",\"authors\":\"Guiliang Liu, Xu Li, Jiakang Wang, Mingming Sun, P. Li\",\"doi\":\"10.1145/3366423.3380010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To extract knowledge from general web text, it requires to build a domain-independent extractor that scales to the entire web corpus. This task is known as Open Information Extraction (OIE). This paper proposes to apply Monte-Carlo Tree Search (MCTS) to accomplish OIE. To achieve this goal, we define a Markov Decision Process for OIE and build a simulator to learn the reward signals, which provides a complete reinforcement learning framework for MCTS. Using this framework, MCTS explores candidate words (and symbols) under the guidance of a pre-trained Sequence-to-Sequence (Seq2Seq) predictor and generates abundant exploration samples during training. We apply the exploration samples to update the reward simulator and the predictor, based on which we implement another MCTS to search the optimal predictions during inference. Empirical evaluation demonstrates that the MCTS inference substantially improves the accuracy of prediction (more than 10%) and achieves a leading performance over other state-of-the-art comparison models.\",\"PeriodicalId\":20754,\"journal\":{\"name\":\"Proceedings of The Web Conference 2020\",\"volume\":\"27 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-04-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"24\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of The Web Conference 2020\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3366423.3380010\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of The Web Conference 2020","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3366423.3380010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 24

摘要

为了从一般的web文本中提取知识,需要构建一个独立于领域的提取器,该提取器可以扩展到整个web语料库。这项任务被称为开放信息提取(OIE)。本文提出应用蒙特卡罗树搜索(MCTS)来实现OIE。为了实现这一目标,我们为OIE定义了一个马尔可夫决策过程,并构建了一个模拟器来学习奖励信号,为MCTS提供了一个完整的强化学习框架。使用该框架,MCTS在预训练的序列到序列(Seq2Seq)预测器的指导下探索候选单词(和符号),并在训练过程中生成丰富的探索样本。我们使用探索样本来更新奖励模拟器和预测器,并在此基础上实现另一个MCTS来搜索推理过程中的最优预测。经验评估表明,MCTS推理大大提高了预测的准确性(超过10%),并且比其他最先进的比较模型实现了领先的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Extracting Knowledge from Web Text with Monte Carlo Tree Search
To extract knowledge from general web text, it requires to build a domain-independent extractor that scales to the entire web corpus. This task is known as Open Information Extraction (OIE). This paper proposes to apply Monte-Carlo Tree Search (MCTS) to accomplish OIE. To achieve this goal, we define a Markov Decision Process for OIE and build a simulator to learn the reward signals, which provides a complete reinforcement learning framework for MCTS. Using this framework, MCTS explores candidate words (and symbols) under the guidance of a pre-trained Sequence-to-Sequence (Seq2Seq) predictor and generates abundant exploration samples during training. We apply the exploration samples to update the reward simulator and the predictor, based on which we implement another MCTS to search the optimal predictions during inference. Empirical evaluation demonstrates that the MCTS inference substantially improves the accuracy of prediction (more than 10%) and achieves a leading performance over other state-of-the-art comparison models.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信