二维可分离过采样DFT调制滤波器组图像去噪

P. Shui
{"title":"二维可分离过采样DFT调制滤波器组图像去噪","authors":"P. Shui","doi":"10.1049/IET-IPR.2007.0218","DOIUrl":null,"url":null,"abstract":"The direction-frequency selectivity of two-dimensional (2-D) separable oversampled discrete Fourier transform (DFT) modulated filter banks, showing that such 2-D filter banks can provide fine frequency tiling and efficient image representations with direction-frequency selectivity, is analysed. Moreover, the doubly local Wiener filtering is extended to the case using two 2-D separable oversampled DFT modulated filter banks, where the empirical subband energy distributions of the image are estimated by the two sets of directional windows matching the direction-frequency selectivity of the subband filters. The proposed algorithm is of low computational complexity and exhibits a great capability to preserve inhomogeneous textures, owing to the fact that 2-D separable DFT modulated bases are suited to represent oscillating patterns in images. The experimental results show that the proposed denoising algorithm is competitive with the existing algorithms with comparable computational complexity. Particularly, for images with abundant inhomogenous texture, it gives larger output peak signal-to-noise ratios (PSNRs) and achieves better visual effect in texture regions of images.","PeriodicalId":13486,"journal":{"name":"IET Image Process.","volume":"16 1","pages":"163-173"},"PeriodicalIF":0.0000,"publicationDate":"2009-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":"{\"title\":\"Image denoising using 2-D separable oversampled DFT modulated filter banks\",\"authors\":\"P. Shui\",\"doi\":\"10.1049/IET-IPR.2007.0218\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The direction-frequency selectivity of two-dimensional (2-D) separable oversampled discrete Fourier transform (DFT) modulated filter banks, showing that such 2-D filter banks can provide fine frequency tiling and efficient image representations with direction-frequency selectivity, is analysed. Moreover, the doubly local Wiener filtering is extended to the case using two 2-D separable oversampled DFT modulated filter banks, where the empirical subband energy distributions of the image are estimated by the two sets of directional windows matching the direction-frequency selectivity of the subband filters. The proposed algorithm is of low computational complexity and exhibits a great capability to preserve inhomogeneous textures, owing to the fact that 2-D separable DFT modulated bases are suited to represent oscillating patterns in images. The experimental results show that the proposed denoising algorithm is competitive with the existing algorithms with comparable computational complexity. Particularly, for images with abundant inhomogenous texture, it gives larger output peak signal-to-noise ratios (PSNRs) and achieves better visual effect in texture regions of images.\",\"PeriodicalId\":13486,\"journal\":{\"name\":\"IET Image Process.\",\"volume\":\"16 1\",\"pages\":\"163-173\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-06-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"22\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IET Image Process.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1049/IET-IPR.2007.0218\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Image Process.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1049/IET-IPR.2007.0218","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22

摘要

分析了二维可分离过采样离散傅立叶变换(DFT)调制滤波器组的方向-频率选择性,表明这种二维滤波器组可以提供良好的频率拼接和有效的图像表示,具有方向-频率选择性。此外,将双局部维纳滤波扩展到使用两个二维可分离过采样DFT调制滤波器组的情况,其中通过匹配子带滤波器的方向频率选择性的两组方向窗口估计图像的经验子带能量分布。由于二维可分离DFT调制基适合表示图像中的振荡模式,该算法具有较低的计算复杂度和较好的非均匀纹理保存能力。实验结果表明,在计算复杂度相当的情况下,本文提出的去噪算法与现有的去噪算法具有一定的竞争力。特别是对于具有丰富非均匀纹理的图像,其输出峰值信噪比(PSNRs)更大,在图像的纹理区域具有更好的视觉效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Image denoising using 2-D separable oversampled DFT modulated filter banks
The direction-frequency selectivity of two-dimensional (2-D) separable oversampled discrete Fourier transform (DFT) modulated filter banks, showing that such 2-D filter banks can provide fine frequency tiling and efficient image representations with direction-frequency selectivity, is analysed. Moreover, the doubly local Wiener filtering is extended to the case using two 2-D separable oversampled DFT modulated filter banks, where the empirical subband energy distributions of the image are estimated by the two sets of directional windows matching the direction-frequency selectivity of the subband filters. The proposed algorithm is of low computational complexity and exhibits a great capability to preserve inhomogeneous textures, owing to the fact that 2-D separable DFT modulated bases are suited to represent oscillating patterns in images. The experimental results show that the proposed denoising algorithm is competitive with the existing algorithms with comparable computational complexity. Particularly, for images with abundant inhomogenous texture, it gives larger output peak signal-to-noise ratios (PSNRs) and achieves better visual effect in texture regions of images.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信