Emmett Breen, Renee Mirka, Zichen Wang, David P. Williamson
{"title":"图中k-MST问题的Garg 2-逼近算法重述","authors":"Emmett Breen, Renee Mirka, Zichen Wang, David P. Williamson","doi":"10.1137/1.9781611977585.ch6","DOIUrl":null,"url":null,"abstract":"This paper revisits the 2-approximation algorithm for $k$-MST presented by Garg in light of a recent paper of Paul et al.. In the $k$-MST problem, the goal is to return a tree spanning $k$ vertices of minimum total edge cost. Paul et al. extend Garg's primal-dual subroutine to improve the approximation ratios for the budgeted prize-collecting traveling salesman and minimum spanning tree problems. We follow their algorithm and analysis to provide a cleaner version of Garg's result. Additionally, we introduce the novel concept of a kernel which allows an easier visualization of the stages of the algorithm and a clearer understanding of the pruning phase. Other notable updates include presenting a linear programming formulation of the $k$-MST problem, including pseudocode, replacing the coloring scheme used by Garg with the simpler concept of neutral sets, and providing an explicit potential function.","PeriodicalId":93491,"journal":{"name":"Proceedings of the SIAM Symposium on Simplicity in Algorithms (SOSA)","volume":"9 1","pages":"56-68"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Revisiting Garg's 2-Approximation Algorithm for the k-MST Problem in Graphs\",\"authors\":\"Emmett Breen, Renee Mirka, Zichen Wang, David P. Williamson\",\"doi\":\"10.1137/1.9781611977585.ch6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper revisits the 2-approximation algorithm for $k$-MST presented by Garg in light of a recent paper of Paul et al.. In the $k$-MST problem, the goal is to return a tree spanning $k$ vertices of minimum total edge cost. Paul et al. extend Garg's primal-dual subroutine to improve the approximation ratios for the budgeted prize-collecting traveling salesman and minimum spanning tree problems. We follow their algorithm and analysis to provide a cleaner version of Garg's result. Additionally, we introduce the novel concept of a kernel which allows an easier visualization of the stages of the algorithm and a clearer understanding of the pruning phase. Other notable updates include presenting a linear programming formulation of the $k$-MST problem, including pseudocode, replacing the coloring scheme used by Garg with the simpler concept of neutral sets, and providing an explicit potential function.\",\"PeriodicalId\":93491,\"journal\":{\"name\":\"Proceedings of the SIAM Symposium on Simplicity in Algorithms (SOSA)\",\"volume\":\"9 1\",\"pages\":\"56-68\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the SIAM Symposium on Simplicity in Algorithms (SOSA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1137/1.9781611977585.ch6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the SIAM Symposium on Simplicity in Algorithms (SOSA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1137/1.9781611977585.ch6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Revisiting Garg's 2-Approximation Algorithm for the k-MST Problem in Graphs
This paper revisits the 2-approximation algorithm for $k$-MST presented by Garg in light of a recent paper of Paul et al.. In the $k$-MST problem, the goal is to return a tree spanning $k$ vertices of minimum total edge cost. Paul et al. extend Garg's primal-dual subroutine to improve the approximation ratios for the budgeted prize-collecting traveling salesman and minimum spanning tree problems. We follow their algorithm and analysis to provide a cleaner version of Garg's result. Additionally, we introduce the novel concept of a kernel which allows an easier visualization of the stages of the algorithm and a clearer understanding of the pruning phase. Other notable updates include presenting a linear programming formulation of the $k$-MST problem, including pseudocode, replacing the coloring scheme used by Garg with the simpler concept of neutral sets, and providing an explicit potential function.