关于dunkl型修正morrey空间中dunkl型极大交换子的有界性

S. Hasanli
{"title":"关于dunkl型修正morrey空间中dunkl型极大交换子的有界性","authors":"S. Hasanli","doi":"10.12732/ijam.v33i3.9","DOIUrl":null,"url":null,"abstract":"In this paper we consider the generalized shift operator, associated with the Dunkl operator and we investigate maximal commutators, commutators of singular integral operators and commutators of the fractional integral operators associated with the generalized shift operator. The boundedness of the Dunkl-type maximal commutator Mb,α from the Dunkl-type modified Morrey space M̃p,λ,α(R) to M̃p,λ,α(R) for all 1 < p < ∞ when b ∈ BMOα(R) are proved. AMS Subject Classification: 42B20, 42B25, 42B35","PeriodicalId":14365,"journal":{"name":"International journal of pure and applied mathematics","volume":"27 1","pages":"493"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ON THE BOUNDEDNESS OF DUNKL-TYPE MAXIMAL COMMUTATORS IN THE DUNKL-TYPE MODIFIED MORREY SPACES\",\"authors\":\"S. Hasanli\",\"doi\":\"10.12732/ijam.v33i3.9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we consider the generalized shift operator, associated with the Dunkl operator and we investigate maximal commutators, commutators of singular integral operators and commutators of the fractional integral operators associated with the generalized shift operator. The boundedness of the Dunkl-type maximal commutator Mb,α from the Dunkl-type modified Morrey space M̃p,λ,α(R) to M̃p,λ,α(R) for all 1 < p < ∞ when b ∈ BMOα(R) are proved. AMS Subject Classification: 42B20, 42B25, 42B35\",\"PeriodicalId\":14365,\"journal\":{\"name\":\"International journal of pure and applied mathematics\",\"volume\":\"27 1\",\"pages\":\"493\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-07-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International journal of pure and applied mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.12732/ijam.v33i3.9\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of pure and applied mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12732/ijam.v33i3.9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文考虑与Dunkl算子相关的广义位移算子,研究了与广义位移算子相关的极大对易子、奇异积分算子的对易子和分数积分算子的对易子。证明了当b∈BMOα(R)时,dunkl型极大交换子Mb,α在dunkl型修正Morrey空间M′p,λ,α(R)到M′p,λ,α(R)的有界性。学科分类:42B20、42B25、42B35
本文章由计算机程序翻译,如有差异,请以英文原文为准。
ON THE BOUNDEDNESS OF DUNKL-TYPE MAXIMAL COMMUTATORS IN THE DUNKL-TYPE MODIFIED MORREY SPACES
In this paper we consider the generalized shift operator, associated with the Dunkl operator and we investigate maximal commutators, commutators of singular integral operators and commutators of the fractional integral operators associated with the generalized shift operator. The boundedness of the Dunkl-type maximal commutator Mb,α from the Dunkl-type modified Morrey space M̃p,λ,α(R) to M̃p,λ,α(R) for all 1 < p < ∞ when b ∈ BMOα(R) are proved. AMS Subject Classification: 42B20, 42B25, 42B35
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信