基于卷积神经网络的旧照片损伤自动恢复

Tien-Ying Kuo, Yu-Jen Wei, Ming-Jui Lee, Tzu-Hao Lin
{"title":"基于卷积神经网络的旧照片损伤自动恢复","authors":"Tien-Ying Kuo, Yu-Jen Wei, Ming-Jui Lee, Tzu-Hao Lin","doi":"10.1109/ISPACS48206.2019.8986336","DOIUrl":null,"url":null,"abstract":"Most of the methods for repairing old photos today are to manually process them using image editing software, such as Photoshop. The time of manual repairing is directly proportional to the damage degree of the photo, which is time consuming and laborious. Therefore, this paper proposes a two-stage convolution network to automatically repair damaged old photos. The first stage will detect the damaged areas of the photos, and the second stage will repair these areas. The experiment results demonstrates our method can successfully detect and repair the damage of the photos.","PeriodicalId":6765,"journal":{"name":"2019 International Symposium on Intelligent Signal Processing and Communication Systems (ISPACS)","volume":"63 1","pages":"1-2"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Automatic Damage Recovery of Old Photos Based on Convolutional Neural Network\",\"authors\":\"Tien-Ying Kuo, Yu-Jen Wei, Ming-Jui Lee, Tzu-Hao Lin\",\"doi\":\"10.1109/ISPACS48206.2019.8986336\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Most of the methods for repairing old photos today are to manually process them using image editing software, such as Photoshop. The time of manual repairing is directly proportional to the damage degree of the photo, which is time consuming and laborious. Therefore, this paper proposes a two-stage convolution network to automatically repair damaged old photos. The first stage will detect the damaged areas of the photos, and the second stage will repair these areas. The experiment results demonstrates our method can successfully detect and repair the damage of the photos.\",\"PeriodicalId\":6765,\"journal\":{\"name\":\"2019 International Symposium on Intelligent Signal Processing and Communication Systems (ISPACS)\",\"volume\":\"63 1\",\"pages\":\"1-2\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 International Symposium on Intelligent Signal Processing and Communication Systems (ISPACS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISPACS48206.2019.8986336\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Symposium on Intelligent Signal Processing and Communication Systems (ISPACS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISPACS48206.2019.8986336","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

现在修复老照片的方法大多是使用Photoshop等图像编辑软件手动处理。手工修复的时间与照片的损坏程度成正比,既费时又费力。因此,本文提出了一种两阶段卷积网络来自动修复损坏的旧照片。第一阶段将检测照片的损坏区域,第二阶段将修复这些区域。实验结果表明,该方法可以成功地检测和修复照片的损伤。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Automatic Damage Recovery of Old Photos Based on Convolutional Neural Network
Most of the methods for repairing old photos today are to manually process them using image editing software, such as Photoshop. The time of manual repairing is directly proportional to the damage degree of the photo, which is time consuming and laborious. Therefore, this paper proposes a two-stage convolution network to automatically repair damaged old photos. The first stage will detect the damaged areas of the photos, and the second stage will repair these areas. The experiment results demonstrates our method can successfully detect and repair the damage of the photos.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信