Tristan Frizza, D. Dansereau, Nagita Mehr Seresht, M. Bewley
{"title":"语义准确的超分辨率生成对抗网络","authors":"Tristan Frizza, D. Dansereau, Nagita Mehr Seresht, M. Bewley","doi":"10.48550/arXiv.2205.08659","DOIUrl":null,"url":null,"abstract":"This work addresses the problems of semantic segmentation and image super-resolution by jointly considering the performance of both in training a Generative Adversarial Network (GAN). We propose a novel architecture and domain-specific feature loss, allowing super-resolution to operate as a pre-processing step to increase the performance of downstream computer vision tasks, specifically semantic segmentation. We demonstrate this approach using Nearmap’s aerial imagery dataset which covers hundreds of urban areas at 5-7 cm per pixel resolution. We show the proposed approach improves perceived image quality as well as quantitative segmentation accuracy across all prediction classes, yielding an average accuracy improvement of 11.8% and 108% at 4 × and 32 × super-resolution, compared with state-of-the art single-network methods. This work demonstrates that jointly considering image-based and task-specific losses can improve the performance of both, and advances the state-of-the-art in semantic-aware super-resolution of aerial imagery. 1: A comparison of of three potential generator model architec- tures for 4 × super-resolution. We chose RRDN for all subsequent ex-periments due to its superior overall performance on pixel-wise loss","PeriodicalId":10549,"journal":{"name":"Comput. Vis. Image Underst.","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Semantically Accurate Super-Resolution Generative Adversarial Networks\",\"authors\":\"Tristan Frizza, D. Dansereau, Nagita Mehr Seresht, M. Bewley\",\"doi\":\"10.48550/arXiv.2205.08659\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work addresses the problems of semantic segmentation and image super-resolution by jointly considering the performance of both in training a Generative Adversarial Network (GAN). We propose a novel architecture and domain-specific feature loss, allowing super-resolution to operate as a pre-processing step to increase the performance of downstream computer vision tasks, specifically semantic segmentation. We demonstrate this approach using Nearmap’s aerial imagery dataset which covers hundreds of urban areas at 5-7 cm per pixel resolution. We show the proposed approach improves perceived image quality as well as quantitative segmentation accuracy across all prediction classes, yielding an average accuracy improvement of 11.8% and 108% at 4 × and 32 × super-resolution, compared with state-of-the art single-network methods. This work demonstrates that jointly considering image-based and task-specific losses can improve the performance of both, and advances the state-of-the-art in semantic-aware super-resolution of aerial imagery. 1: A comparison of of three potential generator model architec- tures for 4 × super-resolution. We chose RRDN for all subsequent ex-periments due to its superior overall performance on pixel-wise loss\",\"PeriodicalId\":10549,\"journal\":{\"name\":\"Comput. Vis. Image Underst.\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Comput. Vis. Image Underst.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48550/arXiv.2205.08659\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comput. Vis. Image Underst.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2205.08659","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Semantically Accurate Super-Resolution Generative Adversarial Networks
This work addresses the problems of semantic segmentation and image super-resolution by jointly considering the performance of both in training a Generative Adversarial Network (GAN). We propose a novel architecture and domain-specific feature loss, allowing super-resolution to operate as a pre-processing step to increase the performance of downstream computer vision tasks, specifically semantic segmentation. We demonstrate this approach using Nearmap’s aerial imagery dataset which covers hundreds of urban areas at 5-7 cm per pixel resolution. We show the proposed approach improves perceived image quality as well as quantitative segmentation accuracy across all prediction classes, yielding an average accuracy improvement of 11.8% and 108% at 4 × and 32 × super-resolution, compared with state-of-the art single-network methods. This work demonstrates that jointly considering image-based and task-specific losses can improve the performance of both, and advances the state-of-the-art in semantic-aware super-resolution of aerial imagery. 1: A comparison of of three potential generator model architec- tures for 4 × super-resolution. We chose RRDN for all subsequent ex-periments due to its superior overall performance on pixel-wise loss