近最优降维算法

Q4 Computer Science
L. Buturovic
{"title":"近最优降维算法","authors":"L. Buturovic","doi":"10.1109/ICPR.1992.201802","DOIUrl":null,"url":null,"abstract":"Dimension reduction is a process of transforming the multidimensional observations into low-dimensional space. In pattern recognition this process should not cause loss of classification accuracy. This goal is best accomplished using Bayes error as a criterion for dimension reduction. Since the criterion is not usable for practical purposes, the authors suggest the use of the k-nearest neighbor estimate of the Bayes error instead. They experimentally demonstrate the superior performance of the linear dimension reduction algorithm based on this criterion, as compared to the traditional techniques.<<ETX>>","PeriodicalId":34917,"journal":{"name":"模式识别与人工智能","volume":"8 1","pages":"401-404"},"PeriodicalIF":0.0000,"publicationDate":"1992-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Near-optimal algorithm for dimension reduction\",\"authors\":\"L. Buturovic\",\"doi\":\"10.1109/ICPR.1992.201802\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Dimension reduction is a process of transforming the multidimensional observations into low-dimensional space. In pattern recognition this process should not cause loss of classification accuracy. This goal is best accomplished using Bayes error as a criterion for dimension reduction. Since the criterion is not usable for practical purposes, the authors suggest the use of the k-nearest neighbor estimate of the Bayes error instead. They experimentally demonstrate the superior performance of the linear dimension reduction algorithm based on this criterion, as compared to the traditional techniques.<<ETX>>\",\"PeriodicalId\":34917,\"journal\":{\"name\":\"模式识别与人工智能\",\"volume\":\"8 1\",\"pages\":\"401-404\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1992-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"模式识别与人工智能\",\"FirstCategoryId\":\"1093\",\"ListUrlMain\":\"https://doi.org/10.1109/ICPR.1992.201802\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"模式识别与人工智能","FirstCategoryId":"1093","ListUrlMain":"https://doi.org/10.1109/ICPR.1992.201802","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0

摘要

降维是将多维观测值转化为低维空间的过程。在模式识别中,这一过程不应造成分类精度的损失。这个目标最好使用贝叶斯误差作为降维的标准。由于该标准不能用于实际目的,作者建议使用贝叶斯误差的k近邻估计来代替。与传统技术相比,他们通过实验证明了基于该准则的线性降维算法的优越性能
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Near-optimal algorithm for dimension reduction
Dimension reduction is a process of transforming the multidimensional observations into low-dimensional space. In pattern recognition this process should not cause loss of classification accuracy. This goal is best accomplished using Bayes error as a criterion for dimension reduction. Since the criterion is not usable for practical purposes, the authors suggest the use of the k-nearest neighbor estimate of the Bayes error instead. They experimentally demonstrate the superior performance of the linear dimension reduction algorithm based on this criterion, as compared to the traditional techniques.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
模式识别与人工智能
模式识别与人工智能 Computer Science-Artificial Intelligence
CiteScore
1.60
自引率
0.00%
发文量
3316
期刊介绍:
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信