{"title":"Sars-Cov2尖峰和端粒酶rnaandsquo的比较得出了严重COVID-19患者肺泡细胞老化加剧的解释","authors":"H. Geurdes","doi":"10.35248/2155-9597.21.12.396","DOIUrl":null,"url":null,"abstract":"In this letter we investigate if SARS-CoV-2 RNA is involved in the increased ageing of alveolar cells. Our in silico study is explorative. With the results we are able to outline experiments with AEC2 repair of bleomycin damaged alveolar cells. If AEC2 repair capability is diminished by spike RNA then perhaps this result provides a first step on a route to treat immortal lung cancer cells.","PeriodicalId":15045,"journal":{"name":"Journal of Bacteriology & Parasitology","volume":"10 1","pages":"1-3"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sars-Cov2 Spike and Telomerase RNAandrsquo;s Compared to Arrive at an Explanation for Increased Ageing in Alveolar Cells in Severe COVID-19\",\"authors\":\"H. Geurdes\",\"doi\":\"10.35248/2155-9597.21.12.396\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this letter we investigate if SARS-CoV-2 RNA is involved in the increased ageing of alveolar cells. Our in silico study is explorative. With the results we are able to outline experiments with AEC2 repair of bleomycin damaged alveolar cells. If AEC2 repair capability is diminished by spike RNA then perhaps this result provides a first step on a route to treat immortal lung cancer cells.\",\"PeriodicalId\":15045,\"journal\":{\"name\":\"Journal of Bacteriology & Parasitology\",\"volume\":\"10 1\",\"pages\":\"1-3\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Bacteriology & Parasitology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.35248/2155-9597.21.12.396\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Bacteriology & Parasitology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.35248/2155-9597.21.12.396","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Sars-Cov2 Spike and Telomerase RNAandrsquo;s Compared to Arrive at an Explanation for Increased Ageing in Alveolar Cells in Severe COVID-19
In this letter we investigate if SARS-CoV-2 RNA is involved in the increased ageing of alveolar cells. Our in silico study is explorative. With the results we are able to outline experiments with AEC2 repair of bleomycin damaged alveolar cells. If AEC2 repair capability is diminished by spike RNA then perhaps this result provides a first step on a route to treat immortal lung cancer cells.