Shuangyi Yan, F. Khan, A. Mavromatis, Qirui Fan, H. Frank, R. Nejabati, A. Lau, D. Simeonidou
{"title":"基于sdn的机器学习辅助光网络管理的现场试验","authors":"Shuangyi Yan, F. Khan, A. Mavromatis, Qirui Fan, H. Frank, R. Nejabati, A. Lau, D. Simeonidou","doi":"10.1364/OFC.2019.M2E.1","DOIUrl":null,"url":null,"abstract":"In this paper, we reported machine-learning based network dynamic abstraction over a field-trial testbed. The implemented network-scale NCMDB allows the ML-based quality-of-transmission predictor abstract dynamic link parameters for further network planning.","PeriodicalId":6704,"journal":{"name":"2019 Optical Fiber Communications Conference and Exhibition (OFC)","volume":"34 1","pages":"1-3"},"PeriodicalIF":0.0000,"publicationDate":"2019-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Field Trial of Machine-Learning-Assisted and SDN-Based Optical Network Management\",\"authors\":\"Shuangyi Yan, F. Khan, A. Mavromatis, Qirui Fan, H. Frank, R. Nejabati, A. Lau, D. Simeonidou\",\"doi\":\"10.1364/OFC.2019.M2E.1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we reported machine-learning based network dynamic abstraction over a field-trial testbed. The implemented network-scale NCMDB allows the ML-based quality-of-transmission predictor abstract dynamic link parameters for further network planning.\",\"PeriodicalId\":6704,\"journal\":{\"name\":\"2019 Optical Fiber Communications Conference and Exhibition (OFC)\",\"volume\":\"34 1\",\"pages\":\"1-3\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-04-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 Optical Fiber Communications Conference and Exhibition (OFC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1364/OFC.2019.M2E.1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 Optical Fiber Communications Conference and Exhibition (OFC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1364/OFC.2019.M2E.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Field Trial of Machine-Learning-Assisted and SDN-Based Optical Network Management
In this paper, we reported machine-learning based network dynamic abstraction over a field-trial testbed. The implemented network-scale NCMDB allows the ML-based quality-of-transmission predictor abstract dynamic link parameters for further network planning.