基于自适应优化的深度信念网络用于肺癌检测和严重程度分类

M. Shanid, A. Anitha
{"title":"基于自适应优化的深度信念网络用于肺癌检测和严重程度分类","authors":"M. Shanid, A. Anitha","doi":"10.1504/ijbic.2021.118101","DOIUrl":null,"url":null,"abstract":"Computed tomography (CT) for lung cancer detection is trending research in determining the lung cancer on its earlier stages. However, accurate lung cancer detection with severity levels is a major...","PeriodicalId":13636,"journal":{"name":"Int. J. Bio Inspired Comput.","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Adaptive optimisation driven deep belief networks for lung cancer detection and severity level classification\",\"authors\":\"M. Shanid, A. Anitha\",\"doi\":\"10.1504/ijbic.2021.118101\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Computed tomography (CT) for lung cancer detection is trending research in determining the lung cancer on its earlier stages. However, accurate lung cancer detection with severity levels is a major...\",\"PeriodicalId\":13636,\"journal\":{\"name\":\"Int. J. Bio Inspired Comput.\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Bio Inspired Comput.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1504/ijbic.2021.118101\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Bio Inspired Comput.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/ijbic.2021.118101","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

计算机断层扫描(CT)是肺癌早期诊断的研究热点。然而,准确的肺癌检测和严重程度是…
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Adaptive optimisation driven deep belief networks for lung cancer detection and severity level classification
Computed tomography (CT) for lung cancer detection is trending research in determining the lung cancer on its earlier stages. However, accurate lung cancer detection with severity levels is a major...
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信