Bcc金属中的惰性气泡:基于从头算的理论和动力学蒙特卡罗模型

Chao Jiang, Yongfeng Zhang, L. Aagesen, A. Jokisaari, Cheng Sun, J. Gan
{"title":"Bcc金属中的惰性气泡:基于从头算的理论和动力学蒙特卡罗模型","authors":"Chao Jiang, Yongfeng Zhang, L. Aagesen, A. Jokisaari, Cheng Sun, J. Gan","doi":"10.2139/ssrn.3784442","DOIUrl":null,"url":null,"abstract":"Abstract Understanding the interactions of noble gases with metals is of fundamental importance for the design of radiation-resistant structural materials for fission and fusion nuclear reactors. Here we present a unified theory for describing the energetics of He, Ne, Ar, and Kr bubbles in bcc metals in group 5B (V, Nb, Ta), 6B (Cr, Mo, W) and 8B (Fe). Our predictive analytical model is based on the effective-medium and isotropic elasticity theories, and is parameterized using density functional theory (DFT) calculations of small gas-vacancy clusters. By performing kinetic Monte Carlo (KMC) simulations driven by our analytical model, we have predicted the lifetimes of noble gas bubbles and their coarsening by Ostwald ripening. Our most notable finding is the exceptionally higher thermal stability of Ne, Ar and Kr bubbles than He bubbles in bcc metals, conferring them outstanding resistance to Ostwald ripening. The physical origin of the unexpected stability of bubbles formed by large noble gas atoms has been further elucidated. Our theoretical finding is consistent with the experimental observation of He gas bubble superlattice (GBS) coarsening under thermal annealing, and provides new insights on the exceptional stability of fission GBS in bcc U-Mo up to a high homologous temperature of 0.78. The present calculated results also compare favorably with the existing thermal helium desorption spectrometry experiments in the literature.","PeriodicalId":10592,"journal":{"name":"Computational & Theoretical Chemistry eJournal","volume":"66 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Noble Gas Bubbles in Bcc Metals: Ab Initio-Based Theory and Kinetic Monte Carlo Modeling\",\"authors\":\"Chao Jiang, Yongfeng Zhang, L. Aagesen, A. Jokisaari, Cheng Sun, J. Gan\",\"doi\":\"10.2139/ssrn.3784442\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Understanding the interactions of noble gases with metals is of fundamental importance for the design of radiation-resistant structural materials for fission and fusion nuclear reactors. Here we present a unified theory for describing the energetics of He, Ne, Ar, and Kr bubbles in bcc metals in group 5B (V, Nb, Ta), 6B (Cr, Mo, W) and 8B (Fe). Our predictive analytical model is based on the effective-medium and isotropic elasticity theories, and is parameterized using density functional theory (DFT) calculations of small gas-vacancy clusters. By performing kinetic Monte Carlo (KMC) simulations driven by our analytical model, we have predicted the lifetimes of noble gas bubbles and their coarsening by Ostwald ripening. Our most notable finding is the exceptionally higher thermal stability of Ne, Ar and Kr bubbles than He bubbles in bcc metals, conferring them outstanding resistance to Ostwald ripening. The physical origin of the unexpected stability of bubbles formed by large noble gas atoms has been further elucidated. Our theoretical finding is consistent with the experimental observation of He gas bubble superlattice (GBS) coarsening under thermal annealing, and provides new insights on the exceptional stability of fission GBS in bcc U-Mo up to a high homologous temperature of 0.78. The present calculated results also compare favorably with the existing thermal helium desorption spectrometry experiments in the literature.\",\"PeriodicalId\":10592,\"journal\":{\"name\":\"Computational & Theoretical Chemistry eJournal\",\"volume\":\"66 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-05-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational & Theoretical Chemistry eJournal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.3784442\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational & Theoretical Chemistry eJournal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3784442","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

摘要:了解稀有气体与金属的相互作用对于设计裂变和聚变核反应堆的抗辐射结构材料具有重要意义。本文提出了一个统一的理论来描述5B族(V, Nb, Ta), 6B族(Cr, Mo, W)和8B族(Fe) bcc金属中He, Ne, Ar和Kr气泡的能量学。我们的预测分析模型基于有效介质和各向同性弹性理论,并使用密度泛函理论(DFT)计算小型气体空位团簇的参数化。通过动力学蒙特卡罗(KMC)模拟,我们预测了稀有气体气泡的寿命和它们的奥斯特瓦尔德成熟的粗化。我们最值得注意的发现是,在bcc金属中,Ne、Ar和Kr气泡比He气泡具有更高的热稳定性,这使它们具有出色的抗奥斯特瓦尔德成熟的能力。由大惰性气体原子形成的气泡的意想不到的稳定性的物理起源已进一步阐明。我们的理论发现与热退火下He气泡超晶格(GBS)粗化的实验观察相一致,并为bcc U-Mo中裂变GBS在高达0.78的高同源温度下的优异稳定性提供了新的见解。计算结果与文献中已有的热氦解吸光谱实验结果比较一致。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Noble Gas Bubbles in Bcc Metals: Ab Initio-Based Theory and Kinetic Monte Carlo Modeling
Abstract Understanding the interactions of noble gases with metals is of fundamental importance for the design of radiation-resistant structural materials for fission and fusion nuclear reactors. Here we present a unified theory for describing the energetics of He, Ne, Ar, and Kr bubbles in bcc metals in group 5B (V, Nb, Ta), 6B (Cr, Mo, W) and 8B (Fe). Our predictive analytical model is based on the effective-medium and isotropic elasticity theories, and is parameterized using density functional theory (DFT) calculations of small gas-vacancy clusters. By performing kinetic Monte Carlo (KMC) simulations driven by our analytical model, we have predicted the lifetimes of noble gas bubbles and their coarsening by Ostwald ripening. Our most notable finding is the exceptionally higher thermal stability of Ne, Ar and Kr bubbles than He bubbles in bcc metals, conferring them outstanding resistance to Ostwald ripening. The physical origin of the unexpected stability of bubbles formed by large noble gas atoms has been further elucidated. Our theoretical finding is consistent with the experimental observation of He gas bubble superlattice (GBS) coarsening under thermal annealing, and provides new insights on the exceptional stability of fission GBS in bcc U-Mo up to a high homologous temperature of 0.78. The present calculated results also compare favorably with the existing thermal helium desorption spectrometry experiments in the literature.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信