Bios中的偏见:一个高风险情境下语义表示偏见的案例研究

Maria De-Arteaga, Alexey Romanov, Hanna M. Wallach, J. Chayes, C. Borgs, A. Chouldechova, S. Geyik, K. Kenthapadi, A. Kalai
{"title":"Bios中的偏见:一个高风险情境下语义表示偏见的案例研究","authors":"Maria De-Arteaga, Alexey Romanov, Hanna M. Wallach, J. Chayes, C. Borgs, A. Chouldechova, S. Geyik, K. Kenthapadi, A. Kalai","doi":"10.1145/3287560.3287572","DOIUrl":null,"url":null,"abstract":"We present a large-scale study of gender bias in occupation classification, a task where the use of machine learning may lead to negative outcomes on peoples' lives. We analyze the potential allocation harms that can result from semantic representation bias. To do so, we study the impact on occupation classification of including explicit gender indicators---such as first names and pronouns---in different semantic representations of online biographies. Additionally, we quantify the bias that remains when these indicators are \"scrubbed,\" and describe proxy behavior that occurs in the absence of explicit gender indicators. As we demonstrate, differences in true positive rates between genders are correlated with existing gender imbalances in occupations, which may compound these imbalances.","PeriodicalId":20573,"journal":{"name":"Proceedings of the Conference on Fairness, Accountability, and Transparency","volume":"33 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"304","resultStr":"{\"title\":\"Bias in Bios: A Case Study of Semantic Representation Bias in a High-Stakes Setting\",\"authors\":\"Maria De-Arteaga, Alexey Romanov, Hanna M. Wallach, J. Chayes, C. Borgs, A. Chouldechova, S. Geyik, K. Kenthapadi, A. Kalai\",\"doi\":\"10.1145/3287560.3287572\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a large-scale study of gender bias in occupation classification, a task where the use of machine learning may lead to negative outcomes on peoples' lives. We analyze the potential allocation harms that can result from semantic representation bias. To do so, we study the impact on occupation classification of including explicit gender indicators---such as first names and pronouns---in different semantic representations of online biographies. Additionally, we quantify the bias that remains when these indicators are \\\"scrubbed,\\\" and describe proxy behavior that occurs in the absence of explicit gender indicators. As we demonstrate, differences in true positive rates between genders are correlated with existing gender imbalances in occupations, which may compound these imbalances.\",\"PeriodicalId\":20573,\"journal\":{\"name\":\"Proceedings of the Conference on Fairness, Accountability, and Transparency\",\"volume\":\"33 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-01-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"304\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Conference on Fairness, Accountability, and Transparency\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3287560.3287572\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Conference on Fairness, Accountability, and Transparency","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3287560.3287572","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 304

摘要

我们提出了一项关于职业分类中性别偏见的大规模研究,在这项任务中,机器学习的使用可能会对人们的生活产生负面影响。我们分析了语义表示偏差可能导致的分配危害。为此,我们研究了在网络传记的不同语义表示中包含明确的性别指标(如名字和代词)对职业分类的影响。此外,我们量化了当这些指标被“抹掉”时仍然存在的偏见,并描述在没有明确性别指标的情况下发生的代理行为。正如我们所证明的那样,性别之间真实阳性率的差异与职业中现有的性别不平衡有关,这可能会加剧这些不平衡。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bias in Bios: A Case Study of Semantic Representation Bias in a High-Stakes Setting
We present a large-scale study of gender bias in occupation classification, a task where the use of machine learning may lead to negative outcomes on peoples' lives. We analyze the potential allocation harms that can result from semantic representation bias. To do so, we study the impact on occupation classification of including explicit gender indicators---such as first names and pronouns---in different semantic representations of online biographies. Additionally, we quantify the bias that remains when these indicators are "scrubbed," and describe proxy behavior that occurs in the absence of explicit gender indicators. As we demonstrate, differences in true positive rates between genders are correlated with existing gender imbalances in occupations, which may compound these imbalances.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信