L. W. Lim, A. Fong, Rachel Ang, Roth Qin Gui Voo, Justin Nian Hong Teh, Md Hazwani Khairy Md Husni, H. Cai, L. Tobing, Nanxi Li, Surasit Chung, L. Lee
{"title":"用激光和氢退火降低锗硅波导的传输损耗","authors":"L. W. Lim, A. Fong, Rachel Ang, Roth Qin Gui Voo, Justin Nian Hong Teh, Md Hazwani Khairy Md Husni, H. Cai, L. Tobing, Nanxi Li, Surasit Chung, L. Lee","doi":"10.1117/12.2649846","DOIUrl":null,"url":null,"abstract":"Germanium-on-Silicon (Ge-on-Si) platform has been demonstrated as an excellent candidate for mid-infrared photonics applications, including on-chip mid-infrared spectroscopy and biochemical sensing. However, this platform is often saddled by high propagation loss due to a combination of threading dislocation defects at the Ge/Si interface, absorption in the silicon for λ < 8 μm, and surface scattering due to sidewall roughness. This work investigates the effects on loss reduction through different annealing techniques on Ge-on-Si waveguides fabricated using CMOS-compatible processes. We explore the use of local laser annealing at waveguide sidewalls, whereby the fluence was varied. A non-local annealing technique in hydrogen ambient was also employed as comparison. The propagation losses for wavelengths, ranging from λ = 5 μm to λ = 11 μm, were systematically characterized by fabricating waveguide and grating coupler structures on the same chip. Cutback measurements were performed by varying the waveguide length (of the same width) from L = 1 mm to L = 4 mm. Both hydrogen and laser annealing experiments show marked reduction in the propagation loss, by up to 27% and 46% respectively. This finding paves the way for post-processing techniques to reduce propagation loss in Ge-on-Si platform, which will enable various on-chip mid-IR applications in the future.","PeriodicalId":54670,"journal":{"name":"Opto-Electronics Review","volume":"72 1","pages":"1242414 - 1242414-5"},"PeriodicalIF":0.9000,"publicationDate":"2023-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Reduction of Ge-on-Si waveguide propagation loss by laser and hydrogen annealing\",\"authors\":\"L. W. Lim, A. Fong, Rachel Ang, Roth Qin Gui Voo, Justin Nian Hong Teh, Md Hazwani Khairy Md Husni, H. Cai, L. Tobing, Nanxi Li, Surasit Chung, L. Lee\",\"doi\":\"10.1117/12.2649846\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Germanium-on-Silicon (Ge-on-Si) platform has been demonstrated as an excellent candidate for mid-infrared photonics applications, including on-chip mid-infrared spectroscopy and biochemical sensing. However, this platform is often saddled by high propagation loss due to a combination of threading dislocation defects at the Ge/Si interface, absorption in the silicon for λ < 8 μm, and surface scattering due to sidewall roughness. This work investigates the effects on loss reduction through different annealing techniques on Ge-on-Si waveguides fabricated using CMOS-compatible processes. We explore the use of local laser annealing at waveguide sidewalls, whereby the fluence was varied. A non-local annealing technique in hydrogen ambient was also employed as comparison. The propagation losses for wavelengths, ranging from λ = 5 μm to λ = 11 μm, were systematically characterized by fabricating waveguide and grating coupler structures on the same chip. Cutback measurements were performed by varying the waveguide length (of the same width) from L = 1 mm to L = 4 mm. Both hydrogen and laser annealing experiments show marked reduction in the propagation loss, by up to 27% and 46% respectively. This finding paves the way for post-processing techniques to reduce propagation loss in Ge-on-Si platform, which will enable various on-chip mid-IR applications in the future.\",\"PeriodicalId\":54670,\"journal\":{\"name\":\"Opto-Electronics Review\",\"volume\":\"72 1\",\"pages\":\"1242414 - 1242414-5\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2023-03-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Opto-Electronics Review\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2649846\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Opto-Electronics Review","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1117/12.2649846","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Reduction of Ge-on-Si waveguide propagation loss by laser and hydrogen annealing
Germanium-on-Silicon (Ge-on-Si) platform has been demonstrated as an excellent candidate for mid-infrared photonics applications, including on-chip mid-infrared spectroscopy and biochemical sensing. However, this platform is often saddled by high propagation loss due to a combination of threading dislocation defects at the Ge/Si interface, absorption in the silicon for λ < 8 μm, and surface scattering due to sidewall roughness. This work investigates the effects on loss reduction through different annealing techniques on Ge-on-Si waveguides fabricated using CMOS-compatible processes. We explore the use of local laser annealing at waveguide sidewalls, whereby the fluence was varied. A non-local annealing technique in hydrogen ambient was also employed as comparison. The propagation losses for wavelengths, ranging from λ = 5 μm to λ = 11 μm, were systematically characterized by fabricating waveguide and grating coupler structures on the same chip. Cutback measurements were performed by varying the waveguide length (of the same width) from L = 1 mm to L = 4 mm. Both hydrogen and laser annealing experiments show marked reduction in the propagation loss, by up to 27% and 46% respectively. This finding paves the way for post-processing techniques to reduce propagation loss in Ge-on-Si platform, which will enable various on-chip mid-IR applications in the future.
期刊介绍:
Opto-Electronics Review is peer-reviewed and quarterly published by the Polish Academy of Sciences (PAN) and the Association of Polish Electrical Engineers (SEP) in electronic version. It covers the whole field of theory, experimental techniques, and instrumentation and brings together, within one journal, contributions from a wide range of disciplines. The scope of the published papers includes any aspect of scientific, technological, technical and industrial works concerning generation, transmission, transformation, detection and application of light and other forms of radiative energy whose quantum unit is photon. Papers covering novel topics extending the frontiers in optoelectronics or photonics are very encouraged.
It has been established for the publication of high quality original papers from the following fields:
Optical Design and Applications,
Image Processing
Metamaterials,
Optoelectronic Materials,
Micro-Opto-Electro-Mechanical Systems,
Infrared Physics and Technology,
Modelling of Optoelectronic Devices, Semiconductor Lasers
Technology and Fabrication of Optoelectronic Devices,
Photonic Crystals,
Laser Physics, Technology and Applications,
Optical Sensors and Applications,
Photovoltaics,
Biomedical Optics and Photonics