闭合方程双二次逼近下直角轴平面变形连续平衡的微分方程

IF 0.3 Q4 MECHANICS
S. V. Bakushev
{"title":"闭合方程双二次逼近下直角轴平面变形连续平衡的微分方程","authors":"S. V. Bakushev","doi":"10.17223/19988621/76/6","DOIUrl":null,"url":null,"abstract":"The subject under analysis is construction of differential equations of equilibrium in displacements for plane deformation of physically and geometrically nonlinear continuous media when the closing equations are biquadratically approximated in a Cartesian rectangular coordinate system. Proceeding from the assumption that, generally speaking, the diagrams of volume and shear deformation are independent from each other, six main cases of physical dependences are considered, depending on the relative position of the break points of biquadratic diagrams of volume and shear deformation. Construction of physical dependencies is based on the calculation of the secant module of volume and shear deformation. When approximating the graphs of volume and shear deformation diagrams using two segments of parabolas, the secant shear modulus in the first segment is a linear function of the intensity of shear deformations; the secant modulus of volume expansion-contraction is a linear function of the first invariant of the strain tensor. In the second section of the diagrams of both volume and shear deformation, the secant shear modulus is a fractional (rational) function of the intensity of shear deformations; the secant modulus of volume expansion-contraction is a fractional (rational) function of the first invariant of the strain tensor. The obtained differential equations of equilibrium in displacements can be applied in determining the stress-strain state of physically and geometrically nonlinear continuous media under plane deformation the closing equations of physical relations for which are approximated by biquadratic functions.","PeriodicalId":43729,"journal":{"name":"Vestnik Tomskogo Gosudarstvennogo Universiteta-Matematika i Mekhanika-Tomsk State University Journal of Mathematics and Mechanics","volume":null,"pages":null},"PeriodicalIF":0.3000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Differential equations of continuum equilibrium for plane deformation in cartesian axials at biquadratic approximation of closing equations\",\"authors\":\"S. V. Bakushev\",\"doi\":\"10.17223/19988621/76/6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The subject under analysis is construction of differential equations of equilibrium in displacements for plane deformation of physically and geometrically nonlinear continuous media when the closing equations are biquadratically approximated in a Cartesian rectangular coordinate system. Proceeding from the assumption that, generally speaking, the diagrams of volume and shear deformation are independent from each other, six main cases of physical dependences are considered, depending on the relative position of the break points of biquadratic diagrams of volume and shear deformation. Construction of physical dependencies is based on the calculation of the secant module of volume and shear deformation. When approximating the graphs of volume and shear deformation diagrams using two segments of parabolas, the secant shear modulus in the first segment is a linear function of the intensity of shear deformations; the secant modulus of volume expansion-contraction is a linear function of the first invariant of the strain tensor. In the second section of the diagrams of both volume and shear deformation, the secant shear modulus is a fractional (rational) function of the intensity of shear deformations; the secant modulus of volume expansion-contraction is a fractional (rational) function of the first invariant of the strain tensor. The obtained differential equations of equilibrium in displacements can be applied in determining the stress-strain state of physically and geometrically nonlinear continuous media under plane deformation the closing equations of physical relations for which are approximated by biquadratic functions.\",\"PeriodicalId\":43729,\"journal\":{\"name\":\"Vestnik Tomskogo Gosudarstvennogo Universiteta-Matematika i Mekhanika-Tomsk State University Journal of Mathematics and Mechanics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Vestnik Tomskogo Gosudarstvennogo Universiteta-Matematika i Mekhanika-Tomsk State University Journal of Mathematics and Mechanics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17223/19988621/76/6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vestnik Tomskogo Gosudarstvennogo Universiteta-Matematika i Mekhanika-Tomsk State University Journal of Mathematics and Mechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17223/19988621/76/6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

摘要

本文分析的问题是在直角坐标系下以双二次逼近逼近物理和几何非线性连续介质平面变形的位移平衡微分方程的构造。从体积和剪切变形图通常是相互独立的假设出发,根据体积和剪切变形双二次图断点的相对位置,考虑了六种主要的物理依赖情况。物理依赖关系的构建是基于体积和剪切变形的割线模块的计算。当用两段抛物线近似体积和剪切变形图时,第一段的割线剪切模量是剪切变形强度的线性函数;体积膨胀-收缩的割线模量是应变张量第一不变量的线性函数。在体积和剪切变形图的第二部分中,割线剪切模量是剪切变形强度的分数(有理)函数;体积膨胀收缩的割线模量是应变张量第一不变量的分数(有理)函数。所得的位移平衡微分方程可用于确定平面变形下物理和几何非线性连续介质的应力-应变状态,其物理关系的闭合方程近似为双二次函数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Differential equations of continuum equilibrium for plane deformation in cartesian axials at biquadratic approximation of closing equations
The subject under analysis is construction of differential equations of equilibrium in displacements for plane deformation of physically and geometrically nonlinear continuous media when the closing equations are biquadratically approximated in a Cartesian rectangular coordinate system. Proceeding from the assumption that, generally speaking, the diagrams of volume and shear deformation are independent from each other, six main cases of physical dependences are considered, depending on the relative position of the break points of biquadratic diagrams of volume and shear deformation. Construction of physical dependencies is based on the calculation of the secant module of volume and shear deformation. When approximating the graphs of volume and shear deformation diagrams using two segments of parabolas, the secant shear modulus in the first segment is a linear function of the intensity of shear deformations; the secant modulus of volume expansion-contraction is a linear function of the first invariant of the strain tensor. In the second section of the diagrams of both volume and shear deformation, the secant shear modulus is a fractional (rational) function of the intensity of shear deformations; the secant modulus of volume expansion-contraction is a fractional (rational) function of the first invariant of the strain tensor. The obtained differential equations of equilibrium in displacements can be applied in determining the stress-strain state of physically and geometrically nonlinear continuous media under plane deformation the closing equations of physical relations for which are approximated by biquadratic functions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.90
自引率
66.70%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信